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This is a solution to Exercise problems in Chapter 2 of “Introduction to Commutative Al-
gebra" written by M. F. Atiyah and I. G. MacDonald. You can find the updated version and
solutions to other chapters on my personal website: [https://ijhlee0511.github.id].
WARNING This solution is written for self-study purposes and to consolidate my understand-
ing. I do not take responsibility for any disadvantages resulting from the use of this solu-
tion. It is at your own risk. If you find any typos or errors in this solution, please feel free to
contact me via email at [1hlee0b110@gmail.com] or [1jhleeObl1@kaist.ac.kr].

Exercises and Solutions

2.1. Show that (Z/mZ) ®z (Z/nZ) = 0 of m, n are coprime.

Solution. There exist integers x and y such that xm + yn = 1. As aresult, foranya € Z/mZ
and b € Z/nZ,

a®b=(xm+yn)(a®b)=xma®b+a® ynb=0.
O

2.2. Let A be aring, a an ideal, M an A-module. Show that (4/a) ®4 M is isomorphic to
M/aM.

Solution. By the natural inclusion and projection, a sequence 0 - a - A — A/a — 0Ois
exact. Tensoring the sequence, we get an exact sequence a @ M — M — A/a @ M — 0.
Since the map a ® M — M in the sequence is given by x ® m +— xm, we get A/a @ M =
M/Im(a@ M — M) =~ M/aM. O

2.3. Let A be alocal ring, M and N finitely generated A-modules. Prove thatif M @ N = 0,
then M =0or N = 0.

Solution. Let m be the unique maximal ideal. Suppose neither M = 0 nor N = 0. Then
by Nakayama’s lemma, M/mM # 0 and N/mN # 0. We can view M/mM and N/mN
as finite dimensional vector spaces over k := A/wm. Therefore, V := M/mM ®; N/mN
is a k-vector space with dimension (dimy M/mM) x (dimy N/mN)", implying it is nonzero.

'There are a lot of ways to show this, but one may use the fact that every n-dimensional vector space is
isomorphic to k™. In general, R” ® g R™ = R"™ for any commutative ring R by Proposition 2.14.
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Define a map f : M/tuM x N/mN — V by (m,n) +— m ® n. Viewing V as an A-
module, this is naturally an A-bilinear map, so there is a surjective A-module homomorphism
f*: M/muM ®4 N/mN - V sending m ®4 n to m ®; n. From the natural surjection
N —» N/wmN we get an exact sequence M/muM ®4 N — M/muM ®4 N/muN — 0; hence,
there is a surjective A-module homomrophism M/mM ®4 N — V. However, by Exercise
D7

2

M/mM QX4 N = (A/m R4 M) R4 N = A/Itl R4 (M ®4N) =0,

a contradiction. OJ

24. Let M; (i € I)be any family of A-modules, and let M be their direct sum. Prove that M
is flat < each M, is flat.

Solution. Suppose M is flat. If f : N’ — N is an injective A-module homomorphim, then
f®1:N®M — N'®M. However, NQM = P;.; NOM; and N'QM = P, .; N'®M;.
Observing (f ® 1)(N @ M;) € N’ ® M;, the restriction (f @ 1)|ygm; : N @ M; — N’ ® M,
is also injective. Therefore, each M; is also flat.

Conversely, suppose each M; is flat. f0 - N’ — N — N’ — 0 is an exact sequence of
A-modules, then0 — N @ M; — N @ M; — N” ® M; — 0 is also exact. Therefore, the
direct sum of exact sequences 0 — P, .; N'OM; - P, ; NOM; - P, ., N'"®M; — 0
is also exact. [

2.5. Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is
a flat A-algebra.

Solution. As an A-module, A[x] = @;2, Ax' where Ax' = A for eachi € Zo. Since A is
clearly flat, its direct sum A[x] = A%>° is also flat by Exercise 0”4, H

2.6. For any A-module, let M [x] denote the set of all polynomials in x with coefficients in M,
that is to say expressions of the form

mo + mix + -+ m,x" (m; e M).

Defining the product of an element of A[x] and an element of M [x] in the obvious way, show
that M [x] is an A[x]-module.

Show that M [x] =~ A[x] ®4 M.

Solution. M [x] is clearly an abelian group since M is itself an abelian group. Precisely, its
abelian group structure is the same with the direct sum M [x] =~ 72, Mx' =~ P:2, M. Also,
rules for scalar multiplication by A[x] straightforwardly (but too tedious to type every minor
detail) hold.

Firstly, let’s construct an A-module isomorphism A[x] ®4 M — M [x], and show that it
preserves A[x]-scalar multiplication later. Define a map f : A[x] x M — M [x] by

(ap +a1x +---+a,x",m) = aom + (aym)x + --- + (a,m)x".

It is easy to verify f is A-bilinear. Therefore, there is a unique A-module homomorphism ¢ :
A[x] ®4 M — M[x] sending a;x* ® m to (a;m)x’. Now, define an A-module homomrphism
v M[x] — Alx] ®4 M by m;x’ > x' @ m; for eachi € Zs(.2 Then ¥ o ¢ = id,jem and

2Since M [x] = b, M x? as an A-module, this assignment uniquely determines ¥, which is well-defined.
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¢ oy = idy,S s0 ¢ : A[x] ®4 M — M[x] is an A-module isomorphism. We claim that ¢
actually respects scalar multiplication by A[x]. For by + b1x + --- 4+ bsx* € A, we have

F((bo + b1x + -+ + bex®)(aix* @ m)) = f((aibox’ + a;b1x'™' 4+ -+ + a;bx*T) @ m)
= a;bomx’ + a;bymx' T + - 4+ a;bymxS
= (bo + b1x + -+ + byx*)(a;mx")
= (bo + byx + -+ + byx®) f(a;x' ® m),

for each i € Z(. Therefore, ¢ is also an A[x]-module isomorphism. U

2.7. Let p be a prime ideal in A. Show that p[x] is a prime ideal in A[x]. If m is a maximal
ideal in A, is m[x] a maximal ideal in A[x]?

Solution. Since p[x] is the kernel of A[x] - (A/p)[x], we have A[x]/p[x] = (A/p)[x].
Suppose there are ag + -+ + a,x" and by + - - - + b, x" in (A/p)[x] with non-zero a, and b, so
that (ag + --- + a,x")(bg + --- + b,x") = 0. However, we get a,b, = 0, a contradiction for
A/p is an integral domain. As a reulst, p[x] is a prime ideal in A[x].

Let k be a field, A = k[y], and m = (y). Then k[y][x]/(y)[x] = (k[y]/(»)[x] = k[x],
which is clearly not a field in general. Therefore, m[x] is not a maximal ideal. [

2.8. 1) If M and N are flat A-modules, thensois M ®4 N.
ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as an A- module.

Solution. i) If f : L' — L isan injective A-module homomorhpism, then (1® f): NQL" —
N ® L is injective. Also, 1 @ (1® f): M @ (N ® L') > M ® (N ® L) is injective. By the
identification M @ (NQ L) = (M QN)Q L' and M (N ® L) = (M ® N) ® L, it induces
an injectivemap 1'® f : (M QN)QL' - (M QN)® L givenby mQn) 1’ > (m®n) Q.
This shows M ®4 N is flat.

ii) If f : M’ — M is an injective A-module homomorphism then (1® f): B ®4 M' —
B®4 M is injective. However, we can regard this injective map as a B-module homomorphism,
since b1b, @m' + b1by ® f(m') = b1(b, ® f(m')). Therefore, we get an injective B-module
homomorhpism N ® (B ®4 M') —> N ®p (B ®4 M), but by the canonical isomorphism in
2.15 of the main text, we get N @4 M’ — N ®4 M givenbyn @ m' — n ® f(m'). As a
result, NV is flat as an A-module. ]

29. Let0 > M’ - M — M"” — 0 be an exact sequence of A-modules. If M’ and M" are
finitely generated, then so is M.

Solution. Regard M’ as a submodule of M. Since M/M' =~ M", there are x1,...,x, € M

sothat x; + M', ..., x, + M’ generate M/ M’. That is, every element of M belongs to some
coset, which is a linear combination of x; + M’, ..., x, + M'. Let y1,..., ¥, be generators
of M'. Then x1,...,X,, ¥1,..., Ym generate M . O

2.10. Let A be aring, a an ideal contained in the Jacobson radical of A; let M be an A-module
and N a finitely generated A-module, and let u : M — N be a homomorphism. If the induced
homomorphism M/aM — N/aN is surjective, then u is surjective.

3Checking only for generators suffices to show this.
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Solution. Since N is finitely generated, sois N/aN. Suppose n; +ahN,...,n, +aN generate
N/aN where n; = u(m;) forsome m; € M. Then N = aN + Z{Zl An;, so

N/ (Xi_, An;) = aN/(aN N Y [_, An;) = a (N/ Yi_, An;).
By Nakayama’s lemma, we get N = Y ._, An;. Therefore, u is surjective. ]

2.11. Let A be aring # 0. Show that A” =~ A" = m = n.
If ¢ : A" — A" is surjective, then m = n.

If ¢ : A™ — A" is injective, is it always the case m < n?

Solution. Let m be a maximal dieal of A and let ¢ : A™ — A" be an isomorphism. Then
I®¢:(A/m)® A™ — (A/m) ® A" is an isomorphism between vector spaces of dimensions
m and n over the field k = A/m, since (A/m)® A™ =~ k™ and (A/m) ® A" =~ k" by Exercise
2. Hence, m = n.

If ¢ is surjective, then the tensored morphism 1 ® ¢ : k™ — k" is again surjective by
Proposition 2.18. Therefore, m > n by linear algebra.

The injectivity part is a very famous problem, and there are a lot of good answers for it. One
way with a structural approach involves exterior algebra as Corollary 5.11 of [1]. However, |
can not figure out a better answer than the following solution [2] in MathOverflow, which uses
only Proposition 2.4. Suppose there is an injective A-module homomorphism ¢ : A" — A"
with m > n. Identifying A" with {(a1,...,a,,0,...,0) € A™ | a; € A} C A™, we can regard
it as an A-module embedding ¢ : A" — A™; i.e., ¢p(A™) € A™. Therefore, by Proposition
2.4, ¢ satisfies an equation of the form

p@) =¢" +arp?" +-+as =0

where a; are in A and p(x) € A[x]. Suppose the polynomial p has the minimum degree
(well ordering principle). If a; = 0, then ¢p(¢? ! + a1¢?2 4+ --- 4+ ag_1)(v) = 0 for all
v € A™. However, by the injectivity of ¢, we get ¢?~ ! + a1 ¢4 2 +---+a;, = 0, a
contradiction. Therefore a; is nonzero. However, the m-th coordinate of p(¢)(0,...,0,1) is
aq, contradicting to the assumption ¢(A™) C A”". This shows m < n. ]

2.12. Let M be a finitely generated A-module and ¢ : M — A" a surjective homomorphism.
Show that Ker(¢) is finitely generated.

Solution. Leteq,...,e, beabasisof A” and choose u; € M suchthatp(u;) =e; (1 <i <n).
Let N be the submodule of M generated by u;,...,u,. Then every element of x of M must
be in some coset y + Ker(¢) for some y € N if and only if ¢(x) = ¢(y). This shows
N + Ker(¢p) = M. If ryuy + --- + ryu, € N is in Ker(¢), then rie; + --- + r,e, = 0in A”.
This implies ry = --- = r, = 0,s0 N N Ker(¢) = 0. Asaresult, M = N & Ker(¢). Since
M is finitely generated, its quotient M /N = Ker(¢) is also finitely generated. [l

2.13. Let f : A — B be a ring homomorphism, and let N be a B-module. Regarding N
as an A-module by restriction of scalars, form the B-module Ng = B ®4 N. Show that the
homomorphism g : N — Np which maps y to 1 ® y is injective and that g(/N) is a direct
summand of Np.
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Solution. We shall show 1 ® y € B ®4 N is zero only if y = 0. Define p : Ng — N by
p(b®y) = by. Itis easy to see that p is a B-module homomorphism. However, p(1® y) = 0
only if y = 0, so g is injective. Since p is clearly surjective, we have Ng/Ker(p) =~ N =~
Im(g). Let p* : Ng/Ker(p) — N be the induced map by p. Then p*(1 ® y 4+ Ker(p)) = y
for all y € N, so Im(g) + Ker(p) = Np since every element of N must be in some coset
1 ® y 4+ Ker(p). However, because p o g = idy, we get Im(g) N Ker(p) = 0. This shows
Np = Im(g) ® Ker(p) = N & Ker(p). O

2.14. A partially ordered set / is said to be a directed set if for each pair i, j in I there exists
k € I suchthati <k and j <k.

Let A be a ring, let I be a directed set and let (M;);<; be a family of A-modules indexed
by I. For each pair i, j in I such thati < j, let u;; : M; — M, be an A-homomorphism, and
suppose that the following axioms are satisfied:

(1) pi; is the identity mapping of M;, foralli € I;
(2) Wik = Mjk © Kij Wheneveri < j < k.

Then the modules M; and homomorphisms ;; are said to form a direct system M = (M, j1;;)
over the directed set /.

We shall construct an A-module M called the direct limit of the direct system M. Let C
be the direct sum of the M;, and identify each module M; with its canonical image in C. Let
D be the submodule of C generated by all elements of the form x; — u;;(x;) where i < j and
x; € M;. Let M = C/D, let u : C — M be the projection and let y; be the restriction of u
to M, ie

The module M, or more correctly the pair consisting of M and the family of homomor-
phisms p; : M; — M, is called the direct limit of the direct system M, and is written h_r)n M;
From the construction it is clear that u; = p; o u;; wheneveri < j.

Solution. There is nothing to do. O]

2.15. In the situation of Exercise 14, show that every element of M can be written in the form
Wi(x;) for some i € I and some x; € M;.

Show also that if p; (x;) = O then there exists j = i such that p;;(x;) = 0in M;.

Solution. In the construction of M in Exercise T4, there are finitely many iy,...,i, € I so
that y = p;,(x;,) + -+ + Wi, (x;,). Choose some j > iy,...,i, and let x; 1= pu;, j(x;,) +
“+ + Wi, j (xi,). Then w;(x;) = y.

Suppose (;(x;) = 0. Then x; is in Ker(u), where u : C = @,;.; Mi — M is the
projection. Since Ker(u) is a submodule of C generated by {y; — u;; (y;) | i.j € I, j > i},
we have x; = Zzzl(yp — Wi, j,(yp)) where y, € M; andi, < j,. However, every term not
in M; must be eliminated by other terms, so x; = y;» — ;7 (yi’) for some y;» € M;,. The only
possible way is y;; = x; and w;;(x;) = 0. ]

2.16. Show that the direct limit is characterized (up to isomorphism) by the following property.
Let N be an A-module and for eachi € I let ; : M; — N be an A-module homomorphism
such that o; = «; o w;; wheneveri < j. Then there exists a unique homomorphism o : M —
N suchthata; = oo pu,; foralli € 1.
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Solution. Rephrasing the property as a commutative diagram is as follows:

Mij

M; > M]’
M
o; | o;
(Al
N

for j = i, where each triangle in the diagram commutes. This property uniquely characterizes
M up to ‘unique’ isomorphism. Suppose our given (M, ;) satisfies the property, and another
module (M, u;) satisfies the same property. Trivially, if we plug M to N, the unique mor-
phism « is the identity idy,. However, by the assumption, there are unique morphisms 8 and y
so that each triangle of the following diagram commutes

Mi i
14
N > .
Wij M -2y M -2 M
M
/'M}
M; 1L

for each j > i. Therefore we get y o B = idy,. Ditto B o y = idy,, and this shows M and M’
are isomorphic by ‘unique’ isomorphisms 8 and y.

Now let’s show (M, p;) actually satisfy the property. Define an A-module homomorphism
f i@,y Mi — N as (x;)ier = Y ;o7 @i(x;). Since o (x;) = o (ii5(x;)) by the assumption,
S (xi —pij (x;)) = 0. Therefore Ker(u) € Ker( f), so we get the induced A-module homomor-
phism o : M — N satisfying @ o u = f. By the construction, a(u;(x;)) = f(x;) = a;(x;)
for any x; € M;, so « satisfies the desired property. To show the uniqueness of o, suppose
o' : M — N also satisfies the same property. By Exercise Z13, every element of M can be
written in the form w;(x;) for some x; € M;. But o’ (u;(x;)) = a;(x;) = a(ui(x;)). This
ends the proof. O

2.17. Let (M;);c; be a family of submodules of an A-module, such that for each pair of indices
i, j in I there exists k € I such that M; + M; € My. Define i < j to mean M; € M, and let
wij - M; — M; be the embedding of M; in M;. Show that

lim M; = ) M; =) M.
In particular, any A-module is the direct limit of its finitely generated submodules.

Solution. For any m,n € )  M;, notice m + n belongs to some ambient module M, so
UM; = > M;. Let u; : M; — > M, be the natural inclusion, and suppose N be an
A-module and for eachi € [ leto; : M; — N is an A-module homomorphism such that
o; = o o [1;; whenever i < j. Then an A-module homomorphism « : Y M; — N given
by (xi)iesr > > ai(x;) satisfies a(u;(x;)) = «o;(x;) for arbitrary x; € M;. Since pu; is
nothing but inclusion, such « satisfying @« = «; o x; for any i € [ is unique. This shows that
l_il‘_I)lMi = Y M, by Exercise I'T8.



Jaehyeon Lee

In particular, let M be any A-module, and (M;);<; be the collection of all finitely generated
submodules of M. Foreach i, j € I, M; + M; is also finitely generated; hence / and (M;);er
satisfies the desired property. Moreover, for any x € M, Ax is a finitely generated submodule
itself, so M =) M, = li_r)nMi. [

2.18. Let M = (M;, nij), N = (Nj, v;;) be direct systems of A-modules over the same di-
rected set. Let M, N be the direct limits and u; : M; — M, v; : N; — N the associated
homomorphisms.

A homomorphism @ : M — N is by definition a family of A-module homomorphisms
¢; : M; — N;, such that ¢; o u;; = v;; o ¢; wheneveri < j. Show that ® defines a unique
homomorphism ¢ = li_n)lqﬁi :M — N suchthat ¢ o u; = v; o¢p; foralli € I.

Solution. Leto; := v; o ¢; for eachi € I. Then by the assumption, we get
o =V 0 ;i
= ])j o vij o} ¢i
= Vj 0 ¢ 0 Wij
= ° Wij,

whenever i < j. By Exercise T8, this implies that there exists a unique homomorphism
¢ : M — N so that the following diagram commutes:

M—)N

DN

i M-S N

A

M; T) N;
whenever i < j. This ends the proof. [
2.19. A sequence of direct systems and homomorphisms
M—->N-—->P

is exact if the corresponding sequence of modules and module homomorphisms is exact for
eachi € I. Show that the sequence M — N — P of direct limits is then exact.

Solution. For the notations, let M = (M;, u;;), N = (N, v;;), and P = (P;, m;;) be direct
systems of A-modules over the same directed set /. Let M, N, and P be the direct limits and
Wi My — M,v; : Ny - N,and n; : P; — P be the associated homomorphisms. Let ® :
M — Nand ¥ : N — P denote homomorphisms of direct systems so that the given sequence
is exact where ¢; : M; — N;, and {; : N; — P; are associated homomorphisms. By Exercise
, they define a unique homomorphism ¢ = lim¢; : M — N and ¥ = hm vi: N - P
such that ¢ o u; = v; o¢p; and Y o v; = m; 0 Y; “Then the following dlagram commutes:

M; bi > N; Vi > P

| Mij | Vij ﬂi'
i v rr

l M; —l—¢,—>N l—w,—>P
M ¢ > N v > P
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whenever i < j, where the first and second rows are exact by the assumption. We claim that
Im(¢) = Ker(y); i.e., the third row is exact. By Exercise I'T3, for any m € M, there are
some i € [ and some m; € M; so that m = p;(m;). Then Y (¢p(m)) = (Y o p o u;)(m;) =
(7w; o Yr; 0 ¢p;)(m;) = w;(0) = 0, so Im(¢p) < Ker(y/). For the reverse inclusion, suppose n
is in Ker(y). By Exercise ZI3 again, there exists some i € I and some n; € N; such that
n = v;(n;). However, 0 = ¥ (n) = Y (vi(n;)) = m;i(Y¥;(n;)), so there exists some j > i
such that m;; (¥;(n;)) = 0 by the second statement of Exercise ZT3. Notice ¥ (v;j(n;)) =
m;j(Yi(n;)) = 0. Thus, there exists some m; € M; such that ¢;(m;) = v;;j(n;) due to the
assumption that Im(¢;) = Ker(y/;). As a result,

d(wj(m;)) = vi(@;(m;)) = v;(vij(ni)) = vi(n;) = n.
This shows Im(¢p) = Ker(y/). []

2.20. Keeping the same notation as in Exercise 14, let N be any A-module. Then (M; ®
N, pni; ® 1) is a direct system; let P = hm(M ® N) be its direct limit. For eachi € I we
have a homomorphism u; ® 1 : M; ® N=3 M ® N, hence by Exercise 16 a homomorphism
Y : P — M ® N. Show that ¥ is an isomorphism, so that

lim(M; ® N) = (lim M;) ® N.

Solution. For the notation, let ,u§ : M; ® N — P denote the canonical A-module homomor-
phism characterizing the direct limit P. Then ¢ o u; = u; ® 1 foralli € I. Foreachi € I,
let g; : M; x N - M; ® N be the canonical bilinear mapping given by (m;,n) +— m; Q n.
Fixing n € N, we get an A-module homomorphisms g;(—,n) : M; — M; ® N, and it is easy
to see that they form a homomorphism (M;, u;j) — (M; ® N, ;; @ 1) between two directed
system. Therefore, by Exercise TR, they define a unique homomorphism g(—,n) : M — P
such that g(—,n) o ; = u; o g;(—,n). We claim that g(m,—) : N — P is also an A-module
homomorphism for each fixed m € M. By Exercise LT3, there exist some i € [/ and some
m; € M; so that w;(m;) = m. Then forany ny,n, € N and a € A, we have

g(m,ny +anz) = g(wi(m;),ny + any)
= (g(—.n1 + anz) o w;)(m;)
= pi(gi(m;,ny + any))
= wi(gi(m;,n1) + agi(mi,nz))
= w;(gi(m;i,ny)) + ap;(gi(mi, na))
= g(m,ny) + ag(m,ny),

assuming m = p;(m;) for some i € I and some m; € M;. We finally get a bilinear map
g : M x N — P, and hence we obtain the corresponding A-module homomorphism ¢ :
M ® N — P suchthat ¢(m @ n) = g(m,n).

Now we claim that ¢p and ¥ are mutually inverse. For any m € M and n € N, assuming
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m = p;(m;) for some i € I and some m; € M;,

V(p(m @ n)) = y(g(m,n))
= ¥ (g(ui(m;),n))
= (Y o u;)(gi(m;,n))
= (ki ® 1)(gi(mi, n))
= (i ® 1)(m; ® n)

= pui(m;) @n

=mQn,
so ¥ o ¢ = idygn. For the converse, for given p € P, there is some i € [ and some
x; € M; ® N sothat p = uj(x;). We may write x; = Zle m;; ® n; for some k € Zs,
mit,...,mMix € M;,andny,...,nr € N. Then,

SV (p)) = (¢ oY o uj)(x;)
k
= (¢ o (i ® ))(mi; ®n;)

Jj=1

k

=Y p(ui(mij) ®ny)
=1

J

k
> g(pi(mij).nj)

wi(gi(mij.n;))

Il
'M’“

j=1
k
= wimi; ®n;)
j=1
As aresult, im(M; ® N) = (limM;) ® N. [
— —

2.21. Let (A;);cy be a family of rings indexed by a directed set 7, and for each pairi < j in /
let oj; : A; — A; be a ring homomorphism, satisfying conditions (1) and (2) of Exercise 14.
Regarding each A; as a Z-module we can then form the direct limit A = lim 4;. Show that A
inherits a ring structure from the A; so that the mappings A; — A are ring homomorphisms.
The ring A is the direct limit of the system (A4;, o;;).

If A = 0 prove that A; = 0 for somei € I.

Solution. We define multiplication of A as follows. For any a,b € A, by Exercise 19, there
are some i € I and some x;, y; € A; such thata = «;(x;) and b = «;(y;). (We can say x;, y;
lie on same A; since [ is a directed set; precisely, if x;, € A;, and y;, € A;,, then there exists
i € I suchthati; <i and i, < i, and let x; and y; be «;,;(x;,) and @;,; (yi,), respectively)
Then define ab as «;(x;y;). To show it is well-defined, suppose a = o (x;) and b = o (y;)
for some j € I and some x;, y; € A;. There exists some k € I suchthati <k and j <k, so

ap(air(x;) —ajr(x;)) =0 and  og(oix(yi) — ajx(y;)) = 0.

9
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Then by Exercise D-T3, there is some k' = k so that®

arkr (i (Xi) — o (x;)) = 0 and  ogrr (i (vi) — ek (y;)) = 0.
Observe
ik (Xi yi) — (X ¥7) = ek (Xi) (i (vi) — @i (¥;)) + i (vi) (@i (Xi) — ojic(x;)).
Plugging it into the ring homomorphism «’, we obtain
ok (i (X yi) — o (xy;)) = 0.

This demonstrates that o;(x;y;) = o;(x;y;) in A, ensuring the well-defined nature of the
multiplication. For i € I, let 1; denote the multiplicative identity of A;. As «;;(1;) = 1;, we
can deduce that o;; (1;) = «;(1;) forall i, j € I. Let I represent «; (1;). Consequently, for any
element a = «;(x;) in 4, la = «;(1;x;) = @;(x;) = a. This confirms that the ring structure
with which we have endowed A makes each ¢; a ring homomorphism.

Now suppose A = 0. Then forany i € I and a; € A;, a; is in Ker(u), where u : C :=
@D;c; Mi — M is the projection. Then as the solution of Exercise T3, there exists some
J € I such that p;;(1;) = 0. Since p;; must sends 1; to 1;, it implies A; = 0. O

2.22. Let (A;,a;;) be a direct system of rings and let Jt; be the nilradical of A;. Show that
1_ir_>n t; is the nilradical of lir_)n A;.

If each A; us an integral domain, then h_r)n Aj; is an integral domain.

Solution. Let 9t denote the nilradical of li_r)nAi. Since o;; (M) € N; for each i < j, the
inclusion ¢; : N; — A; induces the corresponding homomorphism ¢ : li_r)niﬂ,- — lim A4;, and
¢ is injective by Exercise ZT9. Therefore we can regard lir_)n I, as a subset of 1113)1 A; viat. If
X; € Aj; is nilpotent, then ¢; (x;) is also nilpotent, so lim Jt; C 9t by Exercise IZT3. Conversely,
suppose x € h_r)nAi is nilpotent; i.e., x” = 0 for some r € Zy. By Exercise T3 again, it
implies there exists some i, j such that x = o; (x;) and «;; (x;)” = 0. Then o;;(x;) is in N, so
x = o (x;)) is inl_ir_)ni)}i. O

2.23. Let (B))ea be a family of A-algebras. For each finite subset J of A let B; denote the
tensor product (over A) of the By for A € J. If J’ is another finite subset of A and J C J’,
there is a canonical A-algebra homomorphism B; — Bj/. Let B denote the direct limit of the
rings By as J runs through all finite subsets of A. The ring B has a natural A-algebra structure
for which the homomorphisms By — B are A-algebra homomorphisms. The A-algebra B is
the tensor product of the family (B) ) eall

Solution. There is nothing to do. ]

2.24. If M is an A-module, the following are equivalent:

1) M is flat;
i) Tor,‘;1 (M,N) =0foralln > 0 and all A-modules N;
iii) Tord(M, N) = 0 for all A-modules N.

“4Rigorously speaking, to show s sends ‘both’ of them 0, we should repeat the same argument as showing
that we can assume x; and y; lie on the same A;.
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Remark. An A-module P is projective if and only if for every surjective A-module homomor-
phism p : M — M" and any A-module homomorphism /& : P — M"”, there exists a lifting g;
that is, there exists a homomorphism g makes the following diagram commute:

MT>M”—>0

It is easy to see that an A-module P is projective if and only if Hom4 (P, —) is an exact functor;
that is, for every exact sequence of A-modules

0O—-M' - M—>M —0,

the sequence
0 — Hom(P, M") - Hom(P, M) — Hom(P,M') — 0

is also exact. For instance, every free A-module is projective ([3], Theorem 3.5).
For an A-module N, a projective resolution of N is an exact sequence

92 01 €
o> P, > P — Py—>N—-0

in which each P, is projective. If P, is free, then the sequence is called free resolution of N .
It is well known that every A-module N has a free resolution (the proof is actually not difficult,
see Proposition 6.2 of [3]); hence, every A-module has a projective resolution. For a given
projective resolution of N, remove N

02 01 0
e P3PS P20

and form the following sequence by tensoring it with M :

oo M ®4 P 1y ®02 M ®,4 P, 1y ®0; M Q4 Py 1p ®0do 0.
It is not an exact sequence in general, but it is easy to see that Im(1); ® d,+1) € Ker(1 ® 9,)
for all n = 0. Such sequence is called a chain complex. For n > 0, the A-module Tor;;1 (M,N)
is the homology of this complex at position 7; that is, Tor;;1 (M,N) =Ker(lyy ®9,)/ Im(1py ®
0y+1) forn > 0, and Tor{;l(M, N) = Coker(lps ® 9;) = M ®4 N. Surprisingly, Tor?(M, N)
does not depend on the choice of projective resolution of N ([3], Proposition 6.20).

One of the most fundamental properties (in some context it is treated as an axiom for derived
functors, which is the general notion of Tor functor; see Definition 2.1.1 of [4]) of Tor functor is
as follows. If 0 - N' — N — N” is an exact sequence of A-modules, then for an A-module
M there is a long exact sequence, called Tor exact sequence ([3], Theorem 6.27),

-oo = Tord(M,N') — Tor (M, N) — Tor*(M,N") —
Tor? (M,N') — Tor (M,N) — Tor? (M,N") — --.

which ends with
A 4 A A "
-+ — Torg (M, N") — Toryg (M,N) — Torg (M, N") — 0.

Recall Tora‘l(M, N)y=M ®4N.
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Solution. [(i) = (ii)] Suppose an exact sequence
o> > F—>Fp—->N—->0
is a free resolution of N, and by tensoring with M we get
> FBEOM > Fi M > FoQM - NQM — 0.

Since M is flat, the resulting sequence is exact and therefore its homology groups, which are
the Tor;;1 (M, N), are zero for n > 0.
[(i1) = (ii1)] It is trivial.
[(Giii)) = (i))]Let0 > N' — N — N” — 0 be an exact sequence. Then from the Tor exact
sequence,
Tord(M,N") > M N - M®N - M @N" — 0

is exact. Since Torf(M, N”) = 0 it follows that M is flat. O

2.25. Let0 > N’ - N — N” — 0 be an exact sequence, with N” flat. Then N’ is flat <
N is flat.

Solution. From the Tor exact sequence, we get an exact sequence
.o — Torp(M,N") — Tor;(M,N’) — Tor;(M,N) — Tor;(M,N") — ---

for all A-modules M. If N” and N’ are flat, then 0 — Tor;(M, N) — 0 is exact, implying
Tory (M, N) = 0. Therefore N is flat. If N” and N are flat, then 0 — Tor; (M, N') — 0 is
exact. As aresult N’ is flat. O

2.26. Let N be an A-module. Then N is flat < Tor;(A/a, N) = 0 for all finitely generated
ideals a in A.

Solution. 1f N is flat, then Tor; (M, N) = O for all A-modules M by Exercise Z24. To show
the converse, firstly we claim that N is flat if Tor; (M, N) = O for all finitely generated A-
modules M. Let 0 - M’ — M — .M"” — 0 be an exact sequence of finitely generated
A-modules. Then form the Tor exact sequence, we get an exact sequence

Tory,(M", N) > M"QN - MQN - M'"®N — 0.

Since Tor;(M”, N) = 0 by the assumption, we conclude that for any injective homomorphism
f : M’ — M the corresponding homomorphism f®1 : M'QN — M ®N is injective. Hence
N is flat by Proposition 2.19, and this shows the claim holds. Now suppose Tor; (A/a, N) = 0
for all finitely generated ideals a in A. If M is finitely generated, let xq,...,x, be a set of
generators of M, and let M; be the submodule generated by x,...,x;. Observe that for a
given cyclic module Ax,amap f : A — Ax given by 1  x is an A-module homomorphism,
implying Ax = A/ Ker(f). Since M;/M;_, is generated by a single element for 2 < i < n,
M;/M;_1 = A/a; for some ideal a;. Consider the exact sequence

0—> M;—y > M; > M;/M;_; — 0

for2 < i < n. Since Tor(M;, N) = 0 and Tor;(M;/M;_1, N) = 0 by the hypothesis for
2 <i < n, proceeding by induction on i we get Tor, (M, N) = Tor;(M,,, N) = 0. This ends
the proof. O]
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2.27. Aring A is absolutely flat if every A-module is flat. Prove that the following are equiva-
lent:

i) A is absolutely flat
i1) Every principal ideal is idempotent.
iii) Every finitely generated ideal is a direct summand of A.

Solution. [i) = ii)] Let x € A. Since A/(x) is a flat A-module, the map « : (x) ® A/(x) —
A®A/(x) = A/(x) induced by the inclusion (x) < A is injective. Since ¢(x®a) = xa = 0,
we get (x) ® A/(x) = 0. However, (x) ® A/(x) = (x)/(x?) by Exercise I2, so (x) = (x?).
[ii) = iii)] Let x € A. Then x = ax? for some a € A, hence e = ax is idempotent, and
(x) = (e) because x = xe. Now if e, f are idempotents, then (e, f) = (e + f — ef) since
e(e+ f—ef)=-eand f(e+ f—ef) = f. Therefore every finitely generated ideal is principal,
and generated by an idempotent e, hence is a direct summand because 4 = (e) ® (1 —e).8
[iii)) = 1)] Clearly A is an flat A-module, so every finitely generated ideal of A is flat by
Exercise Z4. Since A/a is a direct summand of A for any finitely generated ideal a, we have
Tor;(A/a, N) = 0 for any A-module N. By Exercise 28, every A-module is flat. O

2.28. A Boolean ring is absolutely flat. The ring of Chapter 1, Exercise 7 is absolutely flat. Ev-
ery homomorphic image of an absolutely flat ring is absolutely flat. If a local ring is absolutely
flat, then it is a field.

If A is absolutely flat, every non-unit in A4 is a zero-divisor.

Solution. Every principal ideal of a Boolean ring is clearly idempotent, which makes it abso-
lutely flat.

Let A be the ring of Chapter 1, Exercise 7; i.e., A is a nonzero ring in which every element
x satisfies x” = x for some n > 1 (depending on x). Suppose x"” = x and y” = y for some
n,m > 1. Then x = x(x"1 + ym~ 1 — xm=1ym=lyand y = y(x""1 4 ym~1 — xm=1ym-1)
so (x,y) = (x"~1 4 ym=1 — xm=1ym=1y Therefore every finitely generated ideal is principal.
Since x = x""2x2, we have (x) = (x2), so A4 is absolutely flat.

Let ¢ : A — B be a ring homomorphism where A is absolutely flat. Then ¢(A4) =
A/ Ker(¢p). For any principal ideal (X) of A4/ Ker(¢), clearly (¥) = (x)? because (x) = (x)?
in A. Therefore every homomorphic image of an absolutely flat ring is absolutely flat.

Suppose A is a local ring which is absolutely flat. For any x € A, since every principal
ideal is idempotent, we have x = ax? for some a € A. Then e = ax is idempotent, but a local
ring contains no idempotent neither 0 nor 1. Therefore, if x is nonzero, x is a unit, so A4 is a
field.

Now suppose A is absolutely flat and x is a non-unit in 4. Since every principal ideal
is idempotent, there is some a € A so that x(1 —ax) = x —ax? = 0. If x is not a zero
divisor, then 1 — ax = 0, leading to a contradiction. This shows that every non-unit in A4 is a
zero-divisor. [

>Consider maps A — (e) ® (1 —e) and (¢) ® (1 —e) — A givenby a > (ae,a(l —e)) and (a,b) — a + b,
respectively. Then they are two-sided inverses of each other.
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