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This is a solution to Exercise problems in Chapter 2 of “Introduction to Commutative Al-
gebra" written by M. F. Atiyah and I. G. MacDonald. You can find the updated version and
solutions to other chapters on my personal website: [https://ijhlee0511.github.io].
WARNING This solution is written for self-study purposes and to consolidate my understand-
ing. I do not take responsibility for any disadvantages resulting from the use of this solu-
tion. It is at your own risk. If you find any typos or errors in this solution, please feel free to
contact me via email at [ijhlee0511@gmail.com] or [ijhlee0511@kaist.ac.kr].

Exercises and Solutions
2.1. Show that .Z=mZ/˝Z .Z=nZ/ D 0 of m; n are coprime.

Solution. There exist integers x and y such that xmCyn D 1. As a result, for any a 2 Z=mZ
and b 2 Z=nZ,

a˝ b D .xmC yn/.a˝ b/ D xma˝ b C a˝ ynb D 0:

2.2. Let A be a ring, a an ideal, M an A-module. Show that .A=a/ ˝A M is isomorphic to
M=aM .

Solution. By the natural inclusion and projection, a sequence 0 ! a ! A ! A=a ! 0 is
exact. Tensoring the sequence, we get an exact sequence a ˝ M ! M ! A=a ˝ M ! 0.
Since the map a ˝M ! M in the sequence is given by x ˝m ‘ xm, we get A=a ˝M Š

M= Im.a ˝M ! M/ Š M=aM .

2.3. Let A be a local ring, M and N finitely generated A-modules. Prove that if M ˝N D 0,
then M D 0 or N D 0.

Solution. Let m be the unique maximal ideal. Suppose neither M D 0 nor N D 0. Then
by Nakayama’s lemma, M=mM ¤ 0 and N=mN ¤ 0. We can view M=mM and N=mN
as finite dimensional vector spaces over k ´ A=m. Therefore, V ´ M=mM ˝k N=mN
is a k-vector space with dimension .dimkM=mM/ � .dimk N=mN/

1, implying it is nonzero.
1There are a lot of ways to show this, but one may use the fact that every n-dimensional vector space is

isomorphic to kn. In general, Rn ˝R R
m D Rnm for any commutative ring R by Proposition 2.14.

1

https://ijhlee0511.github.io
mailto:ijhlee0511@gmail.com
mailto:ijhlee0511@kaist.ac.kr


Jaehyeon Lee

Define a map f W M=mM � N=mN � V by . Nm; Nn/ ‘ Nm ˝k Nn. Viewing V as an A-
module, this is naturally an A-bilinear map, so there is a surjective A-module homomorphism
f � W M=mM ˝A N=mN � V sending Nm ˝A Nn to Nm ˝k Nn. From the natural surjection
N � N=mN we get an exact sequence M=mM ˝A N ! M=mM ˝A N=mN ! 0; hence,
there is a surjective A-module homomrophism M=mM ˝A N � V . However, by Exercise
2.2,

M=mM ˝A N D .A=m ˝AM/˝A N D A=m ˝A .M ˝A N/ D 0;

a contradiction.

2.4. Let Mi .i 2 I / be any family of A-modules, and let M be their direct sum. Prove that M
is flat , each Mi is flat.

Solution. Suppose M is flat. If f W N 0 ! N is an injective A-module homomorphim, then
f ˝1 W N˝M ! N 0˝M . However,N˝M D

L
i2I N˝Mi andN 0˝M D

L
i2I N

0˝Mi .
Observing .f ˝1/.N ˝Mi/ � N 0 ˝Mi , the restriction .f ˝1/jN˝Mi

W N ˝Mi ! N 0 ˝Mi

is also injective. Therefore, each Mi is also flat.
Conversely, suppose each Mi is flat. If 0 ! N 0 ! N ! N 00 ! 0 is an exact sequence of

A-modules, then 0 ! N 0 ˝ Mi ! N ˝ Mi ! N 00 ˝ Mi ! 0 is also exact. Therefore, the
direct sum of exact sequences 0 !

L
i2I N

0 ˝Mi !
L

i2I N ˝Mi !
L

i2I N
00 ˝Mi ! 0

is also exact.

2.5. Let AŒx� be the ring of polynomials in one indeterminate over a ring A. Prove that AŒx� is
a flat A-algebra.

Solution. As an A-module, AŒx� D
L1

iD0Ax
i where Axi Š A for each i 2 Z>0. Since A is

clearly flat, its direct sum AŒx� Š AZ>0 is also flat by Exercise 2.4.

2.6. For any A-module, letMŒx� denote the set of all polynomials in x with coefficients inM ,
that is to say expressions of the form

m0 Cm1x C � � � Cmrx
r .mi 2 M/:

Defining the product of an element of AŒx� and an element of MŒx� in the obvious way, show
that MŒx� is an AŒx�-module.

Show that MŒx� Š AŒx�˝AM .

Solution. MŒx� is clearly an abelian group since M is itself an abelian group. Precisely, its
abelian group structure is the same with the direct sumMŒx� Š

L1

iD1Mxi Š
L1

iD1M . Also,
rules for scalar multiplication by AŒx� straightforwardly (but too tedious to type every minor
detail) hold.

Firstly, let’s construct an A-module isomorphism AŒx� ˝A M ! MŒx�, and show that it
preserves AŒx�-scalar multiplication later. Define a map f W AŒx� �M ! MŒx� by

.a0 C a1x C � � � C arx
r ; m/ ‘ a0mC .a1m/x C � � � C .arm/x

r :

It is easy to verify f is A-bilinear. Therefore, there is a unique A-module homomorphism � W

AŒx�˝AM ! MŒx� sending aixi ˝m to .aim/xi . Now, define an A-module homomrphism
 W MŒx� ! AŒx�˝AM by mixi ‘ xi ˝mi for each i 2 Z>0.2 Then  ı � D idAŒx�˝M and

2Since MŒx� Š
L
i Mxi as an A-module, this assignment uniquely determines  , which is well-defined.
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� ı  D idMŒx�,3 so � W AŒx�˝AM ! MŒx� is an A-module isomorphism. We claim that �
actually respects scalar multiplication by AŒx�. For b0 C b1x C � � � C bsx

s 2 A, we have

f ..b0 C b1x C � � � C bsx
s/.aix

i
˝m// D f ..aib0x

i
C aib1x

iC1
C � � � C aibsx

sCi/˝m/

D aib0mx
i
C aib1mx

iC1
C � � � C aibsmx

sCi

D .b0 C b1x C � � � C bsx
s/.aimx

i/

D .b0 C b1x C � � � C bsx
s/f .aix

i
˝m/;

for each i 2 Z>0. Therefore, � is also an AŒx�-module isomorphism.

2.7. Let p be a prime ideal in A. Show that pŒx� is a prime ideal in AŒx�. If m is a maximal
ideal in A, is mŒx� a maximal ideal in AŒx�?

Solution. Since pŒx� is the kernel of AŒx� � .A=p/Œx�, we have AŒx�=pŒx� Š .A=p/Œx�.
Suppose there are a0 C � � � C arx

r and b0 C � � � C brx
r in .A=p/Œx� with non-zero ar and br so

that .a0 C � � � C arx
r/.b0 C � � � C brx

r/ D 0. However, we get arbr D 0, a contradiction for
A=p is an integral domain. As a reulst, pŒx� is a prime ideal in AŒx�.

Let k be a field, A D kŒy�, and m D .y/. Then kŒy�Œx�=.y/Œx� Š .kŒy�=.y//Œx� Š kŒx�,
which is clearly not a field in general. Therefore, mŒx� is not a maximal ideal.

2.8. i) If M and N are flat A-modules, then so is M ˝A N .
ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as an A- module.

Solution. i) If f W L0 ! L is an injectiveA-module homomorhpism, then .1˝f / W N˝L0 !

N ˝L is injective. Also, 1˝ .1˝ f / W M ˝ .N ˝L0/ ! M ˝ .N ˝L/ is injective. By the
identificationM ˝ .N ˝L0/ D .M ˝N/˝L0 andM ˝ .N ˝L/ D .M ˝N/˝L, it induces
an injective map 10 ˝f W .M˝N/˝L0 ! .M˝N/˝L given by .m˝n/˝l 0 ‘ .m˝n/˝l .
This shows M ˝A N is flat.

ii) If f W M 0 ! M is an injective A-module homomorphism then .1˝ f / W B ˝AM
0 !

B˝AM is injective. However, we can regard this injective map as aB-module homomorphism,
since b1b2˝m0 ‘ b1b2˝f .m0/ D b1.b2˝f .m0//. Therefore, we get an injective B-module
homomorhpism N ˝B .B ˝AM

0/ ! N ˝B .B ˝AM/, but by the canonical isomorphism in
2.15 of the main text, we get N ˝A M

0 ! N ˝A M given by n ˝ m0 ‘ n ˝ f .m0/. As a
result, N is flat as an A-module.

2.9. Let 0 ! M 0 ! M ! M 00 ! 0 be an exact sequence of A-modules. If M 0 and M 00 are
finitely generated, then so is M .

Solution. Regard M 0 as a submodule of M . Since M=M 0 Š M 00, there are x1; : : : ; xn 2 M

so that x1 CM 0; : : : ; xn CM 0 generate M=M 0. That is, every element of M belongs to some
coset, which is a linear combination of x1 CM 0; : : : ; xn CM 0. Let y1; : : : ; ym be generators
of M 0. Then x1; : : : ; xn; y1; : : : ; ym generate M .

2.10. Let A be a ring, a an ideal contained in the Jacobson radical of A; letM be an A-module
and N a finitely generated A-module, and let u W M ! N be a homomorphism. If the induced
homomorphism M=aM ! N=aN is surjective, then u is surjective.

3Checking only for generators suffices to show this.
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Solution. SinceN is finitely generated, so isN=aN . Suppose n1CaN; : : : ; nr CaN generate
N=aN where ni D u.mi/ for some mi 2 M . Then N D aN C

Pr
iD1Ani , so

N=
�Pr

iD1Ani
�

Š aN=
�
aN \

Pr
iD1Ani

�
Š a

�
N=

Pr
iD1Ani

�
:

By Nakayama’s lemma, we get N D
Pr
iD1Ani . Therefore, u is surjective.

2.11. Let A be a ring ¤ 0. Show that Am Š An ) m D n.

If � W Am ! An is surjective, then m > n.

If � W Am ! An is injective, is it always the case m 6 n?

Solution. Let m be a maximal dieal of A and let � W Am ! An be an isomorphism. Then
1˝� W .A=m/˝Am ! .A=m/˝An is an isomorphism between vector spaces of dimensions
m and n over the field k D A=m, since .A=m/˝Am Š km and .A=m/˝An Š kn by Exercise
2.2. Hence, m D n.

If � is surjective, then the tensored morphism 1 ˝ � W km ! kn is again surjective by
Proposition 2.18. Therefore, m � n by linear algebra.

The injectivity part is a very famous problem, and there are a lot of good answers for it. One
way with a structural approach involves exterior algebra as Corollary 5.11 of [1]. However, I
can not figure out a better answer than the following solution [2] in MathOverflow, which uses
only Proposition 2.4. Suppose there is an injective A-module homomorphism � W Am ! An

with m > n. Identifying An with f.a1; : : : ; an; 0; : : : ; 0/ 2 Am j ai 2 Ag � Am, we can regard
it as an A-module embedding � W Am Œ Am; i.e., �.Am/ � Am. Therefore, by Proposition
2.4, � satisfies an equation of the form

p.�/ D �d C a1�
d�1

C � � � C ad D 0

where ai are in A and p.x/ 2 AŒx�. Suppose the polynomial p has the minimum degree
(well ordering principle). If ad D 0, then �.�d�1 C a1�

d�2 C � � � C ad�1/.v/ D 0 for all
v 2 Am. However, by the injectivity of �, we get �d�1 C a1�

d�2 C � � � C ad�1 D 0, a
contradiction. Therefore ad is nonzero. However, the m-th coordinate of p.�/.0; : : : ; 0; 1/ is
ad , contradicting to the assumption �.Am/ � An. This shows m � n.

2.12. Let M be a finitely generated A-module and � W M ! An a surjective homomorphism.
Show that Ker.�/ is finitely generated.

Solution. Let e1; : : : ; en be a basis ofAn and choose ui 2 M such that �.ui/ D ei (1 � i � n).
Let N be the submodule of M generated by u1; : : : ; un. Then every element of x of M must
be in some coset y C Ker.�/ for some y 2 N if and only if �.x/ D �.y/. This shows
N C Ker.�/ D M . If r1u1 C � � � C rnun 2 N is in Ker.�/, then r1e1 C � � � C rnen D 0 in An.
This implies r1 D � � � D rn D 0, so N \ Ker.�/ D 0. As a result, M D N ˚ Ker.�/. Since
M is finitely generated, its quotient M=N Š Ker.�/ is also finitely generated.

2.13. Let f W A ! B be a ring homomorphism, and let N be a B-module. Regarding N
as an A-module by restriction of scalars, form the B-module NB D B ˝A N . Show that the
homomorphism g W N ! NB which maps y to 1 ˝ y is injective and that g.N / is a direct
summand of NB .
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Solution. We shall show 1 ˝ y 2 B ˝A N is zero only if y D 0. Define p W NB ! N by
p.b˝y/ D by. It is easy to see that p is a B-module homomorphism. However, p.1˝y/ D 0

only if y D 0, so g is injective. Since p is clearly surjective, we have NB=Ker.p/ Š N Š

Im.g/. Let p� W NB=Ker.p/ ! N be the induced map by p. Then p�.1˝ y C Ker.p// D y

for all y 2 N , so Im.g/ C Ker.p/ D NB since every element of N must be in some coset
1 ˝ y C Ker.p/. However, because p ı g D idN , we get Im.g/ \ Ker.p/ D 0. This shows
NB Š Im.g/˚ Ker.p/ Š N ˚ Ker.p/.

2.14. A partially ordered set I is said to be a directed set if for each pair i; j in I there exists
k 2 I such that i 6 k and j 6 k.

Let A be a ring, let I be a directed set and let .Mi/i2I be a family of A-modules indexed
by I . For each pair i; j in I such that i 6 j , let �ij W Mi ! Mj be an A-homomorphism, and
suppose that the following axioms are satisfied:

(1) �i i is the identity mapping of Mi , for all i 2 I ;
(2) �ik D �jk ı �ij whenever i 6 j 6 k.

Then the modulesMi and homomorphisms �ij are said to form a direct system M D .Mi ; �ij /

over the directed set I .

We shall construct an A-module M called the direct limit of the direct system M. Let C
be the direct sum of the Mi , and identify each module Mi with its canonical image in C . Let
D be the submodule of C generated by all elements of the form xi � �ij .xi/ where i 6 j and
xi 2 Mi . Let M D C=D, let � W C ! M be the projection and let �i be the restriction of �
to Mi .

The module M , or more correctly the pair consisting of M and the family of homomor-
phisms �i W Mi ! M , is called the direct limit of the direct system M , and is written lim

�!
Mi

From the construction it is clear that �i D �j ı �ij whenever i 6 j .

Solution. There is nothing to do.

2.15. In the situation of Exercise 14, show that every element of M can be written in the form
�i.xi/ for some i 2 I and some xi 2 Mi .

Show also that if �i.xi/ D 0 then there exists j > i such that �ij .xi/ D 0 in Mj .

Solution. In the construction of M in Exercise 2.14, there are finitely many i1; : : : ; in 2 I so
that y D �i1.xi1/ C � � � C �in.xin/. Choose some j � i1; : : : ; in and let xj ´ �i1j .xi1/ C

� � � C �inj .xin/. Then �j .xj / D y.
Suppose �i.xi/ D 0. Then xi is in Ker.�/, where � W C ´

L
i2I Mi ! M is the

projection. Since Ker.�/ is a submodule of C generated by fyi � �ij .yi/ j i; j 2 I; j � ig,
we have xi D

Pn
pD1.yp � �ipjp.yp// where yp 2 Mip and ip 6 jp. However, every term not

in Mi must be eliminated by other terms, so xi D yi 0 ��i 0j .yi 0/ for some yi 0 2 Mi 0 . The only
possible way is yi 0 D xi and �ij .xi/ D 0.

2.16. Show that the direct limit is characterized (up to isomorphism) by the following property.
Let N be an A-module and for each i 2 I let ˛i W Mi ! N be an A-module homomorphism
such that ˛i D j̨ ı �ij whenever i 6 j . Then there exists a unique homomorphism ˛ W M !

N such that ˛i D ˛ ı �i for all i 2 I .
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Solution. Rephrasing the property as a commutative diagram is as follows:

Mi Mj

M

N

�ij

�i �j

˛i j̨

9Š˛

for j > i , where each triangle in the diagram commutes. This property uniquely characterizes
M up to ‘unique’ isomorphism. Suppose our given .M;�i/ satisfies the property, and another
module .M 0; �0

i/ satisfies the same property. Trivially, if we plug M to N , the unique mor-
phism ˛ is the identity idM . However, by the assumption, there are unique morphisms ˇ and 

so that each triangle of the following diagram commutes

Mi

M M 0 M

Mj

�ij

�i

�j

9Šˇ 9Š


�0
j

�0
i

�i

�j

for each j > i . Therefore we get 
 ı ˇ D idM . Ditto ˇ ı 
 D idM 0 , and this shows M and M 0

are isomorphic by ‘unique’ isomorphisms ˇ and 
 .
Now let’s show .M;�i/ actually satisfy the property. Define an A-module homomorphism

f W
L

i2I Mi ! N as .xi/i2I ‘
P
i2I ˛i.xi/. Since ˛i.xi/ D j̨ .�ij .xi// by the assumption,

f .xi��ij .xi// D 0. Therefore Ker.�/ � Ker.f /, so we get the inducedA-module homomor-
phism ˛ W M ! N satisfying ˛ ı � D f . By the construction, ˛.�i.xi// D f .xi/ D ˛i.xi/

for any xi 2 Mi , so ˛ satisfies the desired property. To show the uniqueness of ˛, suppose
˛0 W M ! N also satisfies the same property. By Exercise 2.15, every element of M can be
written in the form �i.xi/ for some xi 2 Mi . But ˛0.�i.xi// D ˛i.xi/ D ˛.�i.xi//. This
ends the proof.

2.17. Let .Mi/i2I be a family of submodules of anA-module, such that for each pair of indices
i; j in I there exists k 2 I such that Mi CMj � Mk. Define i 6 j to mean Mi � Mj and let
�ij W Mi ! Mj be the embedding of Mi in Mj . Show that

lim
�!

Mi D
X

Mi D
[
Mi :

In particular, any A-module is the direct limit of its finitely generated submodules.

Solution. For any m; n 2
P
Mi , notice m C n belongs to some ambient module Mk , soS

Mi D
P
Mi . Let �i W Mi !

P
Mi be the natural inclusion, and suppose N be an

A-module and for each i 2 I let ˛i W Mi ! N is an A-module homomorphism such that
˛i D j̨ ı �ij whenever i 6 j . Then an A-module homomorphism ˛ W

P
Mi ! N given

by .xi/i2I ‘
P
˛i.xi/ satisfies ˛.�i.xi// D ˛i.xi/ for arbitrary xi 2 Mi . Since �i is

nothing but inclusion, such ˛ satisfying ˛ D ˛i ı xi for any i 2 I is unique. This shows that
lim
�!

Mi D
P
Mi by Exercise 2.16.
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In particular, letM be anyA-module, and .Mi/i2I be the collection of all finitely generated
submodules ofM . For each i; j 2 I , Mi CMj is also finitely generated; hence I and .Mi/i2I
satisfies the desired property. Moreover, for any x 2 M , Ax is a finitely generated submodule
itself, so M D

P
Mi D lim

�!
Mi .

2.18. Let M D .Mi ; �ij /, N D .Ni ; �ij / be direct systems of A-modules over the same di-
rected set. Let M , N be the direct limits and �i W Mi ! M , �i W Ni ! N the associated
homomorphisms.

A homomorphism ˆ W M ! N is by definition a family of A-module homomorphisms
�i W Mi ! Ni , such that �j ı �ij D �ij ı �i whenever i 6 j . Show that ˆ defines a unique
homomorphism � D lim

�!
�i W M ! N such that � ı �i D �i ı �i for all i 2 I .

Solution. Let ˛i ´ �i ı �i for each i 2 I . Then by the assumption, we get

˛i D �i ı �i

D �j ı �ij ı �i

D �j ı �j ı �ij

D j̨ ı �ij ;

whenever i 6 j . By Exercise 2.16, this implies that there exists a unique homomorphism
� W M ! N so that the following diagram commutes:

Mj Nj

M N

Mi Ni

�ij

�i

�j

�i

�j

�i

�j

9Š�

whenever i 6 j . This ends the proof.

2.19. A sequence of direct systems and homomorphisms

M ! N ! P

is exact if the corresponding sequence of modules and module homomorphisms is exact for
each i 2 I . Show that the sequence M ! N ! P of direct limits is then exact.

Solution. For the notations, let M D .Mi ; �ij /, N D .Ni ; �ij /, and P D .Pi ; �ij / be direct
systems of A-modules over the same directed set I . Let M , N , and P be the direct limits and
�i W Mi ! M , �i W Ni ! N , and �i W Pi ! P be the associated homomorphisms. Let ˆ W

M ! N and ‰ W N ! P denote homomorphisms of direct systems so that the given sequence
is exact where �i W Mi ! Ni , and  i W Ni ! Pi are associated homomorphisms. By Exercise
2.18, they define a unique homomorphism � D lim

�!
�i W M ! N and  D lim

�!
 i W N ! P

such that � ı �i D �i ı �i and  ı �i D �i ı  i . Then the following diagram commutes:

Mi Ni Pi

Mj Nj Pj

M N P

�ij

�j

�ij

�j

�ij

�j

�  

�i  i

�j  j

�i �i�i

7
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whenever i 6 j , where the first and second rows are exact by the assumption. We claim that
Im.�/ D Ker. /; i.e., the third row is exact. By Exercise 2.15, for any m 2 M , there are
some i 2 I and some mi 2 Mi so that m D �i.mi/. Then  .�.m// D . ı � ı �i/.mi/ D

.�i ı  i ı �i/.mi/ D �i.0/ D 0, so Im.�/ � Ker. /. For the reverse inclusion, suppose n
is in Ker. /. By Exercise 2.15 again, there exists some i 2 I and some ni 2 Ni such that
n D �i.ni/. However, 0 D  .n/ D  .�i.ni// D �i. i.ni//, so there exists some j > i

such that �ij . i.ni// D 0 by the second statement of Exercise 2.15. Notice  j .�ij .ni// D

�ij . i.ni// D 0. Thus, there exists some mj 2 Mj such that �j .mj / D �ij .ni/ due to the
assumption that Im.�j / D Ker. j /. As a result,

�.�j .mj // D �j .�j .mj // D �j .�ij .ni// D �i.ni/ D n:

This shows Im.�/ D Ker. /.

2.20. Keeping the same notation as in Exercise 14, let N be any A-module. Then .Mi ˝

N;�ij ˝ 1/ is a direct system; let P D lim
�!
.Mi ˝ N/ be its direct limit. For each i 2 I we

have a homomorphism �i ˝ 1 W Mi ˝N ! M ˝N , hence by Exercise 16 a homomorphism
 W P ! M ˝N . Show that  is an isomorphism, so that

lim
�!
.Mi ˝N/ Š .lim

�!
Mi/˝N:

Solution. For the notation, let �0
i W Mi ˝ N ! P denote the canonical A-module homomor-

phism characterizing the direct limit P . Then  ı �0
i D �i ˝ 1 for all i 2 I . For each i 2 I ,

let gi W Mi � N ! Mi ˝ N be the canonical bilinear mapping given by .mi ; n/ ‘ mi ˝ n.
Fixing n 2 N , we get an A-module homomorphisms gi.�; n/ W Mi ! Mi ˝N , and it is easy
to see that they form a homomorphism .Mi ; �ij / ! .Mi ˝N;�ij ˝ 1/ between two directed
system. Therefore, by Exercise 2.18, they define a unique homomorphism g.�; n/ W M ! P

such that g.�; n/ ı �i D �0
i ı gi.�; n/. We claim that g.m;�/ W N ! P is also an A-module

homomorphism for each fixed m 2 M . By Exercise 2.15, there exist some i 2 I and some
mi 2 Mi so that �i.mi/ D m. Then for any n1; n2 2 N and a 2 A, we have

g.m; n1 C an2/ D g.�i.mi/; n1 C an2/

D .g.�; n1 C an2/ ı �i/.mi/

D �0
i.gi.mi ; n1 C an2//

D �0
i.gi.mi ; n1/C agi.mi ; n2//

D �0
i.gi.mi ; n1//C a�0

i.gi.mi ; n2//

D g.m; n1/C ag.m; n2/;

assuming m D �i.mi/ for some i 2 I and some mi 2 Mi . We finally get a bilinear map
g W M � N ! P , and hence we obtain the corresponding A-module homomorphism � W

M ˝N ! P such that �.m˝ n/ D g.m; n/.
Now we claim that � and  are mutually inverse. For any m 2 M and n 2 N , assuming

8
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m D �i.mi/ for some i 2 I and some mi 2 Mi ,

 .�.m˝ n// D  .g.m; n//

D  .g.�i.mi/; n//

D . ı �0
i/.gi.mi ; n//

D .�i ˝ 1/.gi.mi ; n//

D .�i ˝ 1/.mi ˝ n/

D �i.mi/˝ n

D m˝ n;

so  ı � D idM˝N . For the converse, for given p 2 P , there is some i 2 I and some
xi 2 Mi ˝ N so that p D �0

i.xi/. We may write xi D
Pk
jD1mij ˝ nj for some k 2 Z>0,

mi1; : : : ; mik 2 Mi , and n1; : : : ; nk 2 N . Then,

�. .p// D .� ı  ı �0
i/.xi/

D

kX
jD1

.� ı .�i ˝ 1//.mij ˝ nj /

D

kX
jD1

�.�i.mij /˝ nj /

D

kX
jD1

g.�i.mij /; nj /

D

kX
jD1

�0
i.gi.mij ; nj //

D

kX
jD1

�0
i.mij ˝ nj /

D p:

As a result, lim
�!
.Mi ˝N/ Š .lim

�!
Mi/˝N .

2.21. Let .Ai/i2I be a family of rings indexed by a directed set I , and for each pair i 6 j in I
let ˛ij W Ai ! Aj be a ring homomorphism, satisfying conditions (1) and (2) of Exercise 14.
Regarding each Ai as a Z-module we can then form the direct limit A D lim

�!
Ai . Show that A

inherits a ring structure from the Ai so that the mappings Ai ! A are ring homomorphisms.
The ring A is the direct limit of the system .Ai ; ˛ij /.

If A D 0 prove that Ai D 0 for some i 2 I .

Solution. We define multiplication of A as follows. For any a; b 2 A, by Exercise 2.15, there
are some i 2 I and some xi ; yi 2 Ai such that a D ˛i.xi/ and b D ˛i.yi/. (We can say xi ; yi
lie on same Ai since I is a directed set; precisely, if xi1 2 Ai1 and yi2 2 Ai2 , then there exists
i 2 I such that i1 6 i and i2 6 i , and let xi and yi be ˛i1i.xi1/ and ˛i2i.yi2/, respectively)
Then define ab as ˛i.xiyi/. To show it is well-defined, suppose a D j̨ .xj / and b D j̨ .yj /

for some j 2 I and some xj ; yj 2 Aj . There exists some k 2 I such that i 6 k and j 6 k, so

˛k.˛ik.xi/ � j̨k.xj // D 0 and ˛k.˛ik.yi/ � j̨k.yj // D 0:

9



Jaehyeon Lee

Then by Exercise 2.15, there is some k 0 > k so that4

˛kk0.˛ik.xi/ � j̨k.xj // D 0 and ˛kk0.˛ik.yi/ � j̨k.yj // D 0:

Observe

˛ik.xiyi/ � j̨k.xjyj / D ˛ik.xi/.˛ik.yi/ � j̨k.yj //C j̨k.yj /.˛ik.xi/ � j̨k.xj //:

Plugging it into the ring homomorphism ˛kk0 , we obtain

˛kk0.˛ik.xiyi/ � j̨k.xjyj // D 0:

This demonstrates that ˛i.xiyi/ D j̨ .xjyj / in A, ensuring the well-defined nature of the
multiplication. For i 2 I , let 1i denote the multiplicative identity of Ai . As ˛ij .1i/ D 1j , we
can deduce that ˛i.1i/ D j̨ .1j / for all i; j 2 I . Let 1 represent ˛i.1i/. Consequently, for any
element a D ˛i.xi/ in A, 1a D ˛i.1ixi/ D ˛i.xi/ D a. This confirms that the ring structure
with which we have endowed A makes each ˛i a ring homomorphism.

Now suppose A D 0. Then for any i 2 I and ai 2 Ai , ai is in Ker.�/, where � W C ´L
i2I Mi ! M is the projection. Then as the solution of Exercise 2.15, there exists some

j 2 I such that �ij .1i/ D 0. Since �ij must sends 1i to 1j , it implies Aj D 0.

2.22. Let .Ai ; ˛ij / be a direct system of rings and let Ni be the nilradical of Ai . Show that
lim
�!

Ni is the nilradical of lim
�!

Ai .

If each Ai us an integral domain, then lim
�!

Ai is an integral domain.

Solution. Let N denote the nilradical of lim
�!

Ai . Since ˛ij .Ni/ � Nj for each i 6 j , the
inclusion �i W Ni Œ Ai induces the corresponding homomorphism � W lim

�!
Ni ! lim

�!
Ai , and

� is injective by Exercise 2.19. Therefore we can regard lim
�!

Ni as a subset of lim
�!

Ai via �. If
xi 2 Ai is nilpotent, then ˛i.xi/ is also nilpotent, so lim

�!
Ni � N by Exercise 2.15. Conversely,

suppose x 2 lim
�!

Ai is nilpotent; i.e., xr D 0 for some r 2 Z>0. By Exercise 2.15 again, it
implies there exists some i; j such that x D ˛i.xi/ and ˛ij .xi/r D 0. Then ˛ij .xi/ is in Nj , so
x D j̨ .˛ij .xi// is in lim

�!
Ni .

2.23. Let .B�/�2ƒ be a family of A-algebras. For each finite subset J of ƒ let BJ denote the
tensor product (over A) of the B� for � 2 J . If J 0 is another finite subset of A and J � J 0,
there is a canonical A-algebra homomorphism BJ ! BJ 0 . Let B denote the direct limit of the
rings BJ as J runs through all finite subsets ofƒ. The ring B has a natural A-algebra structure
for which the homomorphisms BJ ! B are A-algebra homomorphisms. The A-algebra B is
the tensor product of the family .B�/�2ƒů

Solution. There is nothing to do.

2.24. If M is an A-module, the following are equivalent:

i) M is flat;
ii) TorAn .M;N / D 0 for all n > 0 and all A-modules N ;

iii) TorA1 .M;N / D 0 for all A-modules N .
4Rigorously speaking, to show ˛kk0 sends ‘both’ of them 0, we should repeat the same argument as showing

that we can assume xi and yi lie on the same Ai .

10
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Remark. An A-module P is projective if and only if for every surjective A-module homomor-
phism p W M ! M 00 and any A-module homomorphism h W P ! M 00, there exists a lifting g;
that is, there exists a homomorphism g makes the following diagram commute:

P

M M 00 0
p

g
h

It is easy to see that an A-module P is projective if and only if HomA.P;�/ is an exact functor;
that is, for every exact sequence of A-modules

0 ! M 00
! M ! M 0

! 0;

the sequence
0 ! Hom.P;M 00/ ! Hom.P;M/ ! Hom.P;M 0/ ! 0

is also exact. For instance, every free A-module is projective ([3], Theorem 3.5).
For an A-module N , a projective resolution of N is an exact sequence

� � � �! P2
@2

�! P1
@1

�! P0
"
�! N �! 0

in which each Pn is projective. If Pn is free, then the sequence is called free resolution of N .
It is well known that every A-moduleN has a free resolution (the proof is actually not difficult,
see Proposition 6.2 of [3]); hence, every A-module has a projective resolution. For a given
projective resolution of N , remove N

� � � �! P2
@2

�! P1
@1

�! P0
@0

�! 0

and form the following sequence by tensoring it with M :

� � � ! M ˝A P2
1M ˝@2

����! M ˝A P1
1M ˝@1

����! M ˝A P0
1M ˝@0

����! 0:

It is not an exact sequence in general, but it is easy to see that Im.1M ˝ @nC1/ � Ker.1M ˝ @n/

for all n > 0. Such sequence is called a chain complex. For n � 0, the A-module TorAn .M;N /
is the homology of this complex at position n; that is, TorAn .M;N / D Ker.1M ˝@n/= Im.1M ˝

@nC1/ for n > 0, and TorA0 .M;N / D Coker.1M ˝ @1/ Š M ˝A N . Surprisingly, TorAn .M;N /
does not depend on the choice of projective resolution of N ([3], Proposition 6.20).

One of the most fundamental properties (in some context it is treated as an axiom for derived
functors, which is the general notion of Tor functor; see Definition 2.1.1 of [4]) of Tor functor is
as follows. If 0 ! N 0 ! N ! N 00 is an exact sequence of A-modules, then for an A-module
M there is a long exact sequence, called Tor exact sequence ([3], Theorem 6.27),

� � � ! TorAn .M;N
0/ ! TorAn .M;N / ! TorAn .M;N

00/ !

TorAn�1.M;N
0/ ! TorAn�1.M;N / ! TorAn�1.M;N

00/ ! � � �

which ends with

� � � ! TorA0 .M;N
0/ ! TorA0 .M;N / ! TorA0 .M;N

00/ ! 0:

Recall TorA0 .M;N / Š M ˝A N .

11
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Solution. [(i) ) (ii)] Suppose an exact sequence

� � � ! F2 ! F1 ! F0 ! N ! 0

is a free resolution of N , and by tensoring with M we get

� � � ! F2 ˝M ! F1 ˝M ! F0 ˝M ! N ˝M ! 0:

Since M is flat, the resulting sequence is exact and therefore its homology groups, which are
the TorAn .M;N /, are zero for n > 0.

[(ii) ) (iii)] It is trivial.
[(iii) ) (i)] Let 0 ! N 0 ! N ! N 00 ! 0 be an exact sequence. Then from the Tor exact

sequence,
TorA1 .M;N

00/ ! M ˝N 0
! M ˝N ! M ˝N 00

! 0

is exact. Since TorA1 .M;N
00/ D 0 it follows that M is flat.

2.25. Let 0 ! N 0 ! N ! N 00 ! 0 be an exact sequence, with N 00 flat. Then N 0 is flat ,

N is flat.

Solution. From the Tor exact sequence, we get an exact sequence

� � � ! Tor2.M;N 00/ ! Tor1.M;N 0/ ! Tor1.M;N / ! Tor1.M;N 00/ ! � � �

for all A-modules M . If N 00 and N 0 are flat, then 0 ! Tor1.M;N / ! 0 is exact, implying
Tor1.M;N / D 0. Therefore N is flat. If N 00 and N are flat, then 0 ! Tor1.M;N 0/ ! 0 is
exact. As a result N 0 is flat.

2.26. Let N be an A-module. Then N is flat , Tor1.A=a; N / D 0 for all finitely generated
ideals a in A.

Solution. If N is flat, then Tor1.M;N / D 0 for all A-modules M by Exercise 2.24. To show
the converse, firstly we claim that N is flat if Tor1.M;N / D 0 for all finitely generated A-
modules M . Let 0 ! M 0 ! M ! :M 00 ! 0 be an exact sequence of finitely generated
A-modules. Then form the Tor exact sequence, we get an exact sequence

Tor1.M 00; N / ! M 0
˝N ! M ˝N ! M 00

˝N ! 0:

Since Tor1.M 00; N / D 0 by the assumption, we conclude that for any injective homomorphism
f W M 0 ! M the corresponding homomorphism f˝1 W M 0˝N ! M˝N is injective. Hence
N is flat by Proposition 2:19, and this shows the claim holds. Now suppose Tor1.A=a; N / D 0

for all finitely generated ideals a in A. If M is finitely generated, let x1; : : : ; xn be a set of
generators of M , and let Mi be the submodule generated by x1; : : : ; xi . Observe that for a
given cyclic module Ax, a map f W A ! Ax given by 1 ‘ x is an A-module homomorphism,
implying Ax Š A=Ker.f /. Since Mi=Mi�1 is generated by a single element for 2 � i � n,
Mi=Mi�1 Š A=ai for some ideal ai . Consider the exact sequence

0 ! Mi�1 ! Mi ! Mi=Mi�1 ! 0

for 2 � i � n. Since Tor.M1; N / D 0 and Tor1.Mi=Mi�1; N / D 0 by the hypothesis for
2 � i � n, proceeding by induction on i we get Tor1.M;N / D Tor1.Mn; N / D 0. This ends
the proof.
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2.27. A ring A is absolutely flat if every A-module is flat. Prove that the following are equiva-
lent:

i) A is absolutely flat
ii) Every principal ideal is idempotent.

iii) Every finitely generated ideal is a direct summand of A.

Solution. [i) ) ii)] Let x 2 A. Since A=.x/ is a flat A-module, the map ˛ W .x/˝ A=.x/ !

A˝A=.x/ D A=.x/ induced by the inclusion .x/ Œ A is injective. Since ˛.x˝ Na/ D x Na D 0,
we get .x/˝ A=.x/ D 0. However, .x/˝ A=.x/ D .x/=.x2/ by Exercise 2.2, so .x/ D .x2/.

[ii) ) iii)] Let x 2 A. Then x D ax2 for some a 2 A, hence e D ax is idempotent, and
.x/ D .e/ because x D xe. Now if e; f are idempotents, then .e; f / D .e C f � ef / since
e.eCf �ef / D e and f .eCf �ef / D f . Therefore every finitely generated ideal is principal,
and generated by an idempotent e, hence is a direct summand because A D .e/˚ .1 � e/.5

[iii) ) i)] Clearly A is an flat A-module, so every finitely generated ideal of A is flat by
Exercise 2.4. Since A=a is a direct summand of A for any finitely generated ideal a, we have
Tor1.A=a; N / D 0 for any A-module N . By Exercise 2.26, every A-module is flat.

2.28. A Boolean ring is absolutely flat. The ring of Chapter 1, Exercise 7 is absolutely flat. Ev-
ery homomorphic image of an absolutely flat ring is absolutely flat. If a local ring is absolutely
flat, then it is a field.

If A is absolutely flat, every non-unit in A is a zero-divisor.

Solution. Every principal ideal of a Boolean ring is clearly idempotent, which makes it abso-
lutely flat.

Let A be the ring of Chapter 1, Exercise 7; i.e., A is a nonzero ring in which every element
x satisfies xn D x for some n > 1 (depending on x). Suppose xn D x and ym D y for some
n;m > 1. Then x D x.xn�1 C ym�1 � xm�1ym�1/ and y D y.xn�1 C ym�1 � xm�1ym�1/,
so .x; y/ D .xn�1 C ym�1 � xm�1ym�1/. Therefore every finitely generated ideal is principal.
Since x D xn�2x2, we have .x/ D .x2/, so A is absolutely flat.

Let � W A ! B be a ring homomorphism where A is absolutely flat. Then �.A/ Š

A=Ker.�/. For any principal ideal . Nx/ of A=Ker.�/, clearly . Nx/ D . Nx/2 because .x/ D .x/2

in A. Therefore every homomorphic image of an absolutely flat ring is absolutely flat.
Suppose A is a local ring which is absolutely flat. For any x 2 A, since every principal

ideal is idempotent, we have x D ax2 for some a 2 A. Then e D ax is idempotent, but a local
ring contains no idempotent neither 0 nor 1. Therefore, if x is nonzero, x is a unit, so A is a
field.

Now suppose A is absolutely flat and x is a non-unit in A. Since every principal ideal
is idempotent, there is some a 2 A so that x.1 � ax/ D x � ax2 D 0. If x is not a zero
divisor, then 1 � ax D 0, leading to a contradiction. This shows that every non-unit in A is a
zero-divisor.

5Consider maps A ! .e/˚ .1� e/ and .e/˚ .1� e/ ! A given by a ‘ .ae; a.1� e// and .a; b/ ‘ aC b,
respectively. Then they are two-sided inverses of each other.
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