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This is a solution to Exercise problems in Chapter 1 of “Introduction to Commutative Al-
gebra" written by M. F. Atiyah and I. G. MacDonald. You can find the updated version and
solutions to other chapters on my personal website: [https://ijhlee0511.github.io].

WARNNING This solution is written for self-study purposes and to consolidate my under-
standing. I do not take responsibility for any disadvantages resulting from the use of this
solution. It is at your own risk. If you find any typos or errors in this solution, please feel free
to contact me via email at [ijhlee0511@gmail.com] or [ijhlee0511@kaist.ac.kr].

I received help from my friend Yeonjin Kim when writing the solution of Problem 2.

Exercises and Solutions
1.1. Let x be a nilpotent element of a ring A. Show that 1C x is a unit of A. Deduce that the
sum of a nilpotent element and a unit is a unit.

Solution. There exists some n > 0 such that xn D 0. Then .1 C x/
Pn�1

kD0.�x/
k D 1 C

.�x/n D 1. Moreover, if u is a unit and x is nilpotent, then u�1.uCx/ D 1C .u�1x/ is a sum
of 1 and a nilpotent element, so uC x is also unit.

1.2. Let A be a ring and let AŒx� be the ring of polynomials in an indeterminate x, with coeffi-
cients in A. Let f D a0 C a1x C � � � C anxn 2 AŒx�. Prove that

i) f is a unit in AŒx� , a0 is a unit in A and a1; : : : ; an are nilpotent.
ii) f is nilpotent , a0; a1; : : : ; an are nilpotent.

iii) f is a zero-divisor , there exists a ¤ 0 in A such that af D 0.
iv) f is said to be primitive if .a0; a1; : : : ; an/ D .1/. Prove that if f; g 2 AŒx�, then fg is

primitive , f and g are primitive.

Solution. i) Assume g.x/ D b0 C b1x C � � � C bmx
m is the inverse of x. We claim that

arC1
n bm�r D 0 for 0 � r � m. Induction on r . When r D 0, it is clear that anbm D 0. For
r > 0, consider f rC1g. Observe the coefficient of xn.rC1/Cm�r is

Pr
iD0 a

iC1
n ar�i

n�1bm�i , which
is arC1

n bm�r by the induction hypothesis. But f rC1g D f r D .a0 C a1x C � � � C anx
n/r , so

arC1
n bm�r is zero. We get am

n g D 0 by the claim, so an is nilpotent since g is a unit. Then
f � anx

n is a unit in AŒx� by Exercise 1.1. Repeating this process, a1; : : : ; an are all nilpotent,
and a0 is a unit in A. The opposite direction is a direct consequence of Exercise 1.1.
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ii) Assume f is nilpotent. In fact, a sum of any tow nilpotent elements is nilpotent; if
an D 0 and bm D 0 for some n;m > 0, .a C b/nCm D 0. Notice a0 must be nilpotent, since
the constant term of f j is aj

0 for all j > 0. Then f � a0 is also nilpotent. Repeating the same
argument repeatedly, an�r is nilpotent for all 0 � r � n. The opposite direction is clear due
to the fact that a sum of two nilpotent elements is nilpotent. Then f � anx

n is a unit in AŒx�
by Exercise 1.1. Repeating this process, a1; : : : ; an are all nilpotent, and a0 is a unit in A. The
opposite direction is a direct consequence of Exercise 1.1.

iii) Choose a nonzero polynomial g D b0 C b1x C � � � C bmx
m of least degree m such

that fg D 0 and bm ¤ 0. We claim that an�rg D 0 for 0 � r � n by induction on r . For
r D 0, clearly anbm D 0; hence, ang D 0 because .ang/f D 0 while deg ang < m. In
particular, bman D 0. Observe gf D g.f � anx

n/ D 0, so by repeating this process we
get bman D bman�1 D � � � D bma0 D 0. Therefore, bmg D 0 where bm is nonzero by the
assumption. The converse direction is obvious.

iv) Let f D a0 C a1x C � � � C anxn, g D b0 C b1x C � � � C bmx
m, and fg D c0 C c1x C

� � � C clx
l . Since .c0; c1; : : : ; cl/ � .a0; a1; : : : ; an/ and .c0; c1; : : : ; cl/ � .b0; b1; : : : ; bm/, if

fg is primitive, then f and g are primitive. Conversely, suppose f and g are primitive but
g is not. Let m be a maximal ideal of A containing .c0; c1; : : : ; cl/. Since .a0; a1; : : : ; an/

and .b0; b1; : : : ; bm/ are unit ideals, the images Nf and Ng of f and g in .A=m/Œx� are nonzero.
However, the image Ng of g is zero in .A=m/Œx�. Since .A=m/Œx� is an integral domain, it is a
contradiction.

1.3. Generalize the results of Exercise 2 to a polynomial ring AŒx1; : : : ; xr � in several indeter-
minates.

Solution. We claim following generalized results of Exercise 1.2.

Claim. Let A be a ring and let AŒx1; : : : ; xr � be the ring of polynomials in an indeterminate
x1; : : : ; xr , with coefficients in A. Let

f D
X

i2Zr
>0

aix 2 AŒx1; : : : ; xr �:

Here, we set xi D x
i1

1 � � � xir
r and i D .i1; � � � ; ir/. Then

i) f is a unit inAŒx1; : : : ; xr �, a0 is a unit inA and ai are nilpotent where 0 D .0; � � � ; 0/

and i 2 Zr
>0 n f0g.

ii) f is nilpotent , ai is nilpotent for all i 2 Zr
>0.

iii) f is a zero-divisor , there exists a ¤ 0 in A such that af D 0.

iv) f is said to be primitive if .ai W i 2 Zr
>0/ D .1/. If f; g 2 AŒx1; : : : ; xr �, then fg is

primitive , f and g are primitive.

Statement (i), (ii), and (iii) of the claim can be shown by tedious repetitions of induction
on r , identifying f as a polynomial in AŒx1; : : : ; xr�1�Œxr �; i.e., polynomial ring in an indeter-
minate xr , with coefficients in AŒx1; : : : ; xr�1�. Proof of iv) is just a simple adaptation of the
proof of (iv) in Exercise 1.2.

1.4. In the ring AŒx�, the Jacobson radical is equal to the nilradical.

Solution. Let N be the nilradical of AŒx� and R be the Jacobson radical of AŒx�. Since every
maximal ideal is prime, N � R. Now consider f 2 R. Then by Proposition 1.9, 1C f x is a
unit, so a0; a1; � � � ; an are all nilpotent, implying f 2 N by Exercise 1.2.
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1.5. Let A be a ring and let AŒŒx�� be the ring of formal power series f D
P1

nD0 anx
n with

coefficients in A. Show that

i) f is a unit in AŒŒx�� , a0 is a unit in A.
ii) If f is nilpotent, then an is nilpotent for all n > 0. Is the converse true?

(See Chapter 7, Exercise 2.)
iii) f belongs to the Jacobson radical of AŒŒx�� , a0 belongs to the Jacobson radical of A.
iv) The contraction of a maximal ideal m of AŒŒx�� is a maximal ideal of A, and m is gener-

ated by mc and x.
v) Every prime ideal of A is the contraction of a prime ideal of AŒŒx��.

Solution. i) Suppose f is a unit, and g D
P1

mD0 bmx
m is the multiplicative inverse of f .

Then a0b0 D 1, so a0 is a unit in A. Conversely, suppose a0 is a unit. Let

bn D

(
a�1

0 ; if n D 0I

�a�1
0

Pn
j D1 ajbn�j ; if n > 0:

Then g D
P1

mD0 bmx
m is the multiplicative inverse of f , so f is a unit in AŒŒx��.

ii) Induction on n. Assume f m D 0 for some m > 0. Then am
0 D 0, so a0 is nilpotent. For

n > 0, f � a0 � a1x � � � � � an�1x
n�1 is nilpotent by the induction hypothesis and Exercise

1.2, so an is also nilpotent.
The converse is not true in general. Let A D

Q1

iD1 Z=2iZ and consider the projection
�i W A � Z=2iZ. There is an element ai 2 A such that �i.ai/ D 2 2 Z=2iZ for each i , and
pj .ai/ D 0 2 Z=2j Z for every j ¤ i . Then ai

i D 0 for all i > 0, so ai is nilpotent. However,
the formal power series f D

P1

iD0 aix
i is not nilpotent, since there is no finite m > 0 such

that f m D 0.
iii) If f belongs to the Jacobson radical of AŒŒx��, then 1 C bf is a unit in AŒŒx�� for any

b 2 A. By .i/, it implies 1 C ba0 is a unit in A for any b 2 A, so a0 is in the Jacobson
radical of A. Conversely, suppose a0 belongs to the Jacobson radical of A. Then for any
g D

P1

mD0 bmx
m 2 AŒŒx��, 1C gf is a unit in AŒŒx��; equivalently, 1C b0a0 is a unit in A by

(i). Because the choice of g is arbitrary, this completes the proof.
iv) For any f 2 AŒŒx��, 1C xf is a unit by (i), so .x/ is contained by every maximal ideal

of AŒŒx��. Let � W AŒŒx�� � AŒŒx��=.x/ be the natural projection. Notice there is a natural
isomorphism AŒŒx��=.x/

�
! A given by a0 C .x/ ‘ a0 for each a0 2 A, and the composition

A Œ AŒŒx�� � AŒŒx��=.x/
�
! A is actually the identity map on A. Let m be a maximal

ideal of AŒŒx��. Since m. contains .x/, the projection � 0 W AŒŒx�� � AŒŒx��=.x/
�
! A sends

it to a maximal ideal of A. However, it is the image of mc via the identity on A, so mc is a
maximal ideal of A. The preimage of mc � A via � 0 is mc C .x/. However, � 0.m/ is mc , so
m � mc C .x/. Since mc � m and .x/ � m, this shows m D mc C .x/.

v) Under the same setting with the solution of (iv), recall A Œ AŒŒx�� � AŒŒx��=.x/
�
!

A is the identity map on A. Let p be a prime ideal of A. Then the preimage of p via the
projection � 0 W AŒŒx�� � AŒŒx��=.x/

�
! A is also prime in AŒŒx��. Then p is the contraction of

.� 0/�1.p/.

1.6. A ring A is such that every ideal not contained in the nilradical contains a nonzero idem-
potent (that is, an element e such that e2 D e ¤ 0/. Prove that the nilradical and Jacobson
radical of A are equal.
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Solution. Since every maximal ideal is prime, the Jacobson radical R of A always contains
the nilradical N of A. If A is a zero ring, then the statement holds vacuously, so assume 1 ¤ 0.
If R 6� N, then there exists a nonzero idempotent element e in R. Since e.1 � e/, 1 � e is a
zero divisor; however, 1 � e must be a unit in A by Proposition 1.9, a contradiction.

1.7. Let A be a ring in which every element x satisfies xn D x for some n > 1 (depending on
x). Show that every prime ideal in A is maximal.

Solution. Let p be a prime ideal of A. It suffices to show that .y/C p D A for any y 2 A n p.
For some m > 1, we have ym D y, so y.ym�1 � 1/ D 0. Since p contains 0, it follows
ym�1 � 1 D x for some x 2 p. Therefore, 1 D ym�1 � x 2 .y/C p. This ends the proof.

1.8. Let A be a ring ¤ 0. Show that the set of prime ideals of A has minimal elements with
respect to inclusion.

Solution. Let P be a collection of all prime ideals of A, and suppose � is a totally ordered
collection of prime ideals in A with respect to inclusion. Assume xy 2

T
p2� p for some

x; y 2 A. We claim that either x 2
T

p2� p or y 2
T

p2� p. If not, then there are some
p1;p2 2 � such that x … p1 and y … p2. Since � is totally ordered with respect to inclusion,
we may say p1 � p2. If follows that y … p1, a contradiction since xy 2 p1. Therefore,

T
p2� p

is a prime ideal in A, and it is the lower bound for � in P . As a result, assuming Zorn’s lemma,
P has a minimal element.

1.9. Let a be an ideal ¤ .1/ in a ring A. Show that a D r.a/ , a is an intersection of prime
ideals.

Solution. If a D r.a/, then a is the intersection of prime ideals containing a by Proposition
1.14. Conversely, suppose a D

T
p2C p for some collection C of prime ideals. Observe

r
�T

p2C p
�

D
T

p2C p; xn 2 p implies x 2 p for each p 2 C . This completes the proof.

1.10. Let A be a ring, N its nilradical. Show that the following are equivalent:

i) A has exactly one prime ideal;
ii) every element of A is either a unit or nilpotent;

iii) A=N is a field.

Solution. [i) ) ii)] Let m be the unique prime (hence, maximal) ideal of A. If x 2 A is not
a unit, then there is some maximal ideal containing x; however, the maximal ideal must be m.
Since m D N by the assumption, it follows that every element of A is either a unit or nilpotent.

[ii) ) iii)] By the assumption, N is maximal, because any ideal containing N is either N
or A.

[iii) ) i)] Since N is the intersection of all prime ideals, N becomes the unique prime ideal
of A.

1.11. A ring A is Boolean if x2 D x for all x 2 A. In a Boolean ring A, show that

i) 2x D 0 for all x 2 A;
ii) every prime ideal p is maximal, and A=p is a field with two elements;

iii) every finitely generated ideal in A is principal.
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Solution. i) For any x 2 A, 2x D .2x/2 D 2x2 C 2x D 4x, so 2x D 0.
ii) By Exercise 7, every prime ideal is maximal. Suppose y 2 A is not in p. Since y.y �

1/ D 0 and p contains 0, p contains y � 1. Therefore, y D 1 C x for some x 2 p, implying
that A=p consists of p and 1C p.

iii) It suffices to show every ideal generated by two elements is principal. Consider .x; y/
for x; y 2 A. Surprisingly, for any a; b 2 A, we have ax C by D .ax C by/.x C y C xy/, so
.x; y/ D .x C y C xy/.

1.12. A local ring contains no idempotent ¤ 0; 1

Solution. Suppose a local ring A with the maximal ideal m has an idempotent e, which is
neither 0 nor 1 (implying A is nonzero). Notice e is a zero divisor, for e.1� e/ D 0. Therefore
the unique maximal ideal m must contains e. By Proposition 1.9, 1 � e must be a unit in A,
since the Jacobson radical of A is just m. However, it is a contradiction for a zero divisor to be
a unit.

1.13. Let K be a field and let † be the set of all irreducible monic polynomials f in one
indeterminate with coefficients in K. Let A be the polynomial ring over K generated by in-
determinates xf , one for each f 2 †. Let a be the ideal of A generated by the polynomials
f .xf / for all f 2 †. Show that a ¤ .1/.

Let m be a maximal ideal of A containing a, and let K1 D A=m. Then K1 is an extension
field of K in which each f 2 † has a root. Repeat the construction with K1 in place of K,
obtaining a field K2 , and so on. Let L D

S1

nD1Kn. Then L is a field in which each f 2 †

splits completely into linear factors. Let NK be the set of all elements of L which are algebraic
over K. Then NK is an algebraic closure of K.

Solution. Suppose a D .1/. There there exist some f1; : : : ; fn 2 † and g1; : : : ; gn 2 A such
that

g1f1.xf1
/C � � � C gnfn.xfn

/ D 1:

Write xi instead of xfi
. The polynomials gi ’s involve only finitely many variables, so we can

regard them as polynomials of x1; : : : ; xN for some sufficiently large N � n. Now we have

g1.x1; : : : ; xN /f1.x1/C � � � C gn.x1; : : : ; xN /fn.xn/ D 1

By the basic field theory, there is a finite field extension K 0 so that ˛i 2 K 0 is a root for each
fi . Let xi D ˛i for 1 � i � n and xnC1 D � � � D xN D 0. Then we get a contradiction;
0 D 1.

1.14. In a ring A, let † be the set of all ideals in which every element is a zero-divisor. Show
that the set † has maximal elements and that every maximal element of † is a prime ideal.
Hence the set of zero-divisors in A is a union of prime ideals1.

Solution. For any given b 2 †, let… be a totally ordered subset of†with respect to inclusion,
in which every element contains b. Then

S
a2… a is clearly an ideal consisting of zero divisors,

which is an upper bound for every element in …. Assuming Zorn’s lemma, † has a maximal
element containing b.

1In Antiyah-Macdonald, 0 is also a zero divisor.
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We claim that maximal elements of † are prime. Firstly, observe product of non-zero
divisors is also non-zero divisor. Suppose ab is a zero divisor for some non-zero divisors
a; b 2 A. Then there exists some non-zero c so that abc D 0. Since a is a non-zero divisor,
bc D 0, which is a contradiction since b is a non-zero divisor. Now, let p be a maximal element
of †, and suppose there exist x; y 2 A n p such that xy is in p. By the maximality of p, there
are some p; q 2 p and a; b 2 A so that both pCax and qCby are non-zero divisor. However,
.pCax/.qCby/ is in p, which contradicts the previous observation that non-zero divisors are
multiplicatively closed.

1.15. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let
V.E/ denote the set of all prime ideals of A which contain E. Prove that

i) if a is the ideal generated by E, then V.E/ D V.a/ D V.r.a//.
ii) V.0/ D X , V.1/ D ¿.

iii) if .Ei/i2I is any family of subsets of A, then

V

 [
i2I

Ei

!
D
\
i2I

V.Ei/:

iv) V.a \ b/ D V.ab/ D V.a/ [ V.b/ for any ideals a;b of A.

These results show that the sets V.E/ satisfy the axioms for closed sets in a topological
space. The resulting topology is called the Zariski topology. The topological space X is called
the prime spectrum of A, and is written Spec.A/.

Solution. i) Clearly, V.E/ � V.a/ � V.r.a//, because E � a � r.a/. Suppose p 2 V.E/.
Then, E � p implies a � p, so p 2 V.a/. Assume q 2 V.a/. Since q � a, q D r.q/ � r.a/.
As a result, V.E/ � V.a/ � V.r.a//.

ii) It is trivial.
iii) Suppose p 2 V

�S
i2I Ei

�
. Then, Ei � p for each i 2 I , so p 2

T
i2I V.Ei/.

Conversely, suppose q 2
T

i2I V.Ei/. Since q � Ei for each i 2 I , q �
S

i2I Ei , so
q 2 V

�S
i2I Ei

�
.

iv) Since r.ab/ D r.a \ b/, V.ab/ D V.r.ab// D V.r.a \ b// D V.a \ b/ by Exercise
1.13 of the main text. Suppose a 6� p and b 6� p for some prime ideal p. By Proposition
1.11, a \ b is not contained in p. Therefore, V.a \ b/ D V.ab/ � V.a/ [ V.b/. The reverse
inclusion is trivial.

1.16. Draw pictures of Spec.Z/, Spec.R/, Spec.CŒx�/, Spec.RŒx�/, Spec.ZŒx�/.

Solution. Omitted.

1.17. For each f 2 A, let Xf denote the complement of V.f / in X D Spec.A/. The sets Xf

are open. Show that they form a basis of open sets for the Zariski topology, and that

i) Xf \Xg D Xfg ;
ii) Xf D ¿ , f is nilpotent;

iii) Xf D X , f is a unit;
iv) Xf D Xg , r ..f // D r ..g//;
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v) X is quasi-compact (that is, every open covering of X has a finite sub-covering).
vi) More generally, each Xf is quasi-compact.

vii) An open subset of X is quasi-compact if and only if it is a finite union of sets Xf .

Solution. For any p 2 Spec.A/, p is a proper ideal of A, so there exists some f 2 A not in p,
and hence p 2 Xf . Now suppose q 2 Xf \Xg for f; g 2 A. Since f … q and g … q, fg … q,
so q 2 Xfg . Moreover, for any p 2 Xfg , fg … p, and therefore f … p and g … q. As a result,
q 2 Xfg D Xf \Xg , and fXf W f 2 Ag forms a basis of open sets for the Zariski topology.

i) We have proven it already.
ii) By Proposition 1.8, it is obvious.
iii) Xf D X if and only if every prime ideal does not contain f . By (1.5), every non-unit

of A is contained in a maximal ideal, so Xf D X if and only if f is a unit.
iv) Xf D Xg if and only if V.f / D V.g/. By Proposition 1.14, the radicals of .f / and

.g/ are the intersections of the prime ideals which contain f and g, respectively, implying
r..f // D r..g//. Conversely, suppose r.f / D r.g/. Then,

V.f / D V.r.f // D V.r.g// D V.g/;

by Exercise 1.15, so Xf D Xg .
v) Suppose X D

S
i2I .X n V.Ei// for some family of subsets fEigi2I of A. Then,

\
i2I

V.Ei/ D V

 [
i2I

Ei

!
D ¿;

by Exercise 1.15. Therefore, A
S

i2I Ei D .1/ (that is, the ideal generated by
S

i2I Ei is A);
otherwise, there exists some maximal ideal containing

S
i2I Ei by Proposition 1.4. As a result,

we can choose elements E1; E2; � � � ; En of fEigi2I such that

x1e1 C x2e2 C � � � C xmem D 1

where x1; x2; : : : ; xm 2 A and e1; : : : ; em 2
Sn

j D1Ej for 1 � j � n. Now fX n V.Ej /g
n
j D1 is

a finite sub-covering of X .
vi) First we claim that V.E/ � V.F / if and only if r.AE/ � r.AF / for subsets E;F of

A. Since the radicals of AE and AF are the intersections of the prime ideals which contain E
and F respectively, the forward direction is obvious. The opposite direction is also clear, since
V.E/ D V.r.AE// � V.r.AF // D V.F / by Exercise 1.15.

Assume Xf �
S

i2I .X n V.Ei// for some family of subsets fEigi2I of A. Equivalently,

V.f / �
\
i2I

V.Ei/ D V

 [
i2I

Ei

!
I

that is,

.f / � r.f / � r

 
A
[
i2I

Ei

!
:

Then we can choose elements E1; E2; : : : ; En of fEigi2I such that f l D x1e1 C x2e2 C � � � C

xmem for some l > 0, x1; x2; : : : ; xm 2 A and e1; e2; : : : ; em 2
Sn

j D1Ej , so that .f / �

r.A
Sn

j Ej /. Therefore Xf �
Sn

j D1.X n V.Ej //.
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vii) Since Xf is quasi-compact, if an open subset U of X is a finite union of sets of the
form Xf , then clearly U is quasi-compact. Conversely, assume U is quasi-compact. Since Xf

forms a basis for the Zariski topology, U can be expressed as the union of some subfamily of
fXf gf 2A. Consequently, U is a finite union of sets of the form Xf .

1.18. For psychological reasons it is sometimes convenient to denote a prime ideal of A by a
letter such as x or y when thinking of it as a point of X D Spec.A/. When thinking of x as a
prime ideal of A, we denote it by px (logically, of course, it is the same thing). Show that

i) the set fxg is closed (we say that x is a “closed point") in Spec.A/ , px is maximal;
ii) fxg D V.px/;

iii) y 2 fxg , px � py;
iv) X is a T0-space (this means that if x, y are distinct points of X , then either there is a

neighborhood of x which does not contain y, or else there is a neighborhood of y which
does not contain x).

Solution. i) Suppose fxg is closed. Then there exists some maximal ideal m of A containing
px. However, fxg is singleton, so m D px. Conversely, if px is maximal, then trivially
fxg D V.px/.

ii) If x 2 V.E/ for some E � A, then any prime ideal containing px also belongs to V.E/;
therefore V.px/ � V.E/. Since V.px/ is contained by every closed set containing x and it is
closed itself, we get fxg D V.px/.

iii) y 2 fxg D V.px/ if and only if py � px by the definition.
iv) Without loss of generality, assume px ¨ py . Then py … V.px/, so py 2 X n V.px/ and

px … X n V.px/.

1.19. A topological space X is said to be irreducible if X ¤ ¿ and if every pair of non-empty
open sets in X intersect, or equivalently if every non-empty open set is dense in X . Show that
Spec.A/ is irreducible if and only if the nilradical of A is a prime ideal.

Solution. For any ideal a and b of A, if X n V.a/ ¤ ¿ and X n V.b/ ¤ ¿, then .X n V.a//\

.X n V.b// D ¿ , if V.a/ ¤ Spec.A/ and V.b/ ¤ Spec.A/, then V.a/ [ V.b/ D V.ab/ ¤

Spec.A/ , if a 6� N and b 6� N, then ab 6� N , N is prime.

1.20. Let X be a topological space.

i) If Y is an irreducible (Exercise 19) subspace of X , then the closure Y of Y in X is
irreducible.

ii) Every irreducible subspace of X is contained in a maximal irreducible subspace.
iii) The maximal irreducible subspaces of X are closed and cover X . They are called the

irreducible components ofX . What are the irreducible components of a Hausdorff space?
iv) If A is a ring and X D Spec.A/, then the irreducible components of X are the closed sets

V.p/, where p is a minimal prime ideal of A (Exercise 8).

Solution. i) Let U1, U2 be open set of X . If Y \ U1 D ¿, then U1 contains no limit point of
Y ; hence, Y \ U1 D ¿. Therefore, if Y \ U1 ¤ ¿ and Y \ U2 ¤ ¿, then Y \ U1 ¤ ¿ and
Y \U2 ¤ ¿. Since Y is irreducible, we get Y \ .U1 \U2/ ¤ ¿, so Y \ .U1 \U2/ ¤ ¿. This
shows Y is also irreducible.
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ii) Let I be a collection of all irreducible subspaces ofX containing an irreducible subspace
I � X , and � be a totally ordered collection of irreducible subspaces in I with respect to
inclusion. Suppose there are two disjoint nonempty open sets U1 and U2 of

S
Y 2� Y . Since

U1 is nonempty, there is some Y1 2 � so that U1 \ Y1 ¤ ¿. Similarly, there exists Y2 2 �

such that U2 \ Y2 ¤ ¿. Because � is totally ordered, we may say Y1 � Y2. Then Y2 \ U1

and Y2 \U2 are two disjoint nonempty open sets of Y2, a contradiction for Y2 to be irreducible.
Therefore,

S
Y 2� Y is also irreducible, and hence it is an upper bound for � . Assuming Zorn’s

lemma, this shows I is contained in a maximal irreducible subspace.
iii) By (i), maximal irreducible subspaces of X are closed. Since one-point sets are clearly

irreducible, every single point of X is contained in some maximal irreducible subspace by (ii);
hence, it coversX . Now supposeX is Hausdorff. For any given subset Y � X , if Y has at least
two points x1 and x2, then there are two disjoint open sets U1 and U2 of X so that x1 2 U1 \Y

and x2 2 U2 \ Y . Therefore, the irreducible components of a Hausdorff space are singletons.
iv) We claim that closed irreducible subspaces of X are exactly the closed sets V.q/, where

q is a prime ideal of A. Since fqg is a singleton subset of Spec.A/, it is irreducible; hence,
its closure fqg D V.q/ is also irreducible by (i) and Exercise 1.18. Conversely, suppose V.a/
is irreducible for given ideal a of A. We may say a D r.a/. If a is not prime, then there are
b; c 2 A n a such that bc 2 a. Then, V.a/ © V.a C .b// and V.a/ © V.a C .c//, since
r.a/ ¤ r.a C .b// and r.a/ ¤ r.a C .c//. However, V.a/ � V.a C .b// [ V.a C .c//, and
hence V.a/ n V.a C .b// and V.a/ n V.a C .c// are two nonempty disjoin open sets of V.a/, a
contradiction. As a result, the claim implies the irreducible components of X are exactly V.p/,
where p is a minimal prime ideal of A.

1.21. Let � W A ! B be a ring homomorphism. Let X D Spec.A/ and Y D Spec.B/. If
q 2 Y , then ��1.q/ is a prime ideal of A, i.e., a point of X . Hence � induces a mapping
�� W Y ! X . Show that

i) If f 2 A then ���1.Xf / D Y�.f /, and hence that �� is continuous.
ii) If a is an ideal of A, then ���1 .V .a// D V.ae/

iii) If b is an ideal of B , then �� .V .b// D V.bc/.
iv) If � is surjective, then �� is a homeomorphism of Y onto the closed subset V .Ker.�// of

X . (In particular, Spec.A/ and Spec.A=N/ (where N is the nilradical of A) are naturally
homeomorphic.)

v) If � is injective, then ��.Y / is dense in X . More precisely, ��.Y / is dense in X ,

Ker.�/ � N.
vi) Let  W B ! C be another ring homomorphism. Then . ı �/� D �� ı  �.

vii) Let A be an integral domain with just one non-zero prime ideal p, and let K be the field
of fractions of A. Let B D .A=p/ �K. Define � W A ! B by �.x/ D . Nx; x/, where Nx is
the image of x in A=p. Show that �� is bijective but not a homeomorphism.

Solution. i) Notice q 2 ���1.Xf / , ��.q/ 2 Xf , ��1.q/ 2 Xf , f … ��1.q/ ,

�.f / … q , q 2 Y�.f /, so ���1.Xf / D Y�.f /. Because Xf forms a basis for the Zariski
topology, �� is continuous.

ii) Observe p 2 ���1 .V .a// , ��.p/ 2 V.a/ , a � ��.p/ , a � ��1.p/ , ae �

p , p 2 V.ae/.
iii) Notice ��.V .b// consists of qc where q � B is a prime ideal containing b. Since b � q

implies bc � qc , we get ��.V .b// � V.bc/. To show V.bc/ is actually the smallest closed
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set containing ��.V .b//, suppose ��.V .b// � V.a/ for some ideal a of A. Then V.b/ �

���1.V .a// D V.ae/, so r.b/ � r.ae/. However, r.bc/ D r.b/c � r.ae/c D r.aec/ � r.a/,
and hence V.bc/ � V.a/.

iv) For p;q 2 Y , suppose ��.p/ D ��.q/. Then ��1.p/ D ��1.q/, and hence p D q by
the surjectivity of �. Therefore, �� is injective. Now prove the following claim.

Claim. Let � W A ! B be a surjective ring homomorphism. If a is an ideal of A, then �.a/ is
also an ideal of B . Moreover, if a is a prime containing Ker.�/, then �.a/ is also prime.

Proof. For any y 2 B , �.x/ D y for some x 2 A. Then y�.a/ D �.x/�.a/ D �.xa/ � �.a/.
Now assume a is a prime ideal ofA. Then � W A=a ! B=�.a/ defined by xCa ‘ �.x/C�.a/
is a ring isomorphism, for it is clearly surjective, and �.x/ 2 �.p/ implies x 2 aCKer.�/ D a.
Therefore, B=�.p/ is an integral domain, so �.a/ is prime in B .

Assume p is a prime ideal of A containing Ker.�/; that is, p 2 V.Ker.�//. Then �.p/ is
prime inB by the claim, so p is a preimage of some prime in Y , implying V.Ker.�// � ��.Y /.
Since every prime ideal contains 0, the opposite inclusion is trivial.

Finally, let’s show �� W Y ! V.Ker.�// is a closed map. For any ideal b of Y , we claim
that ��.V .b// D V.Ker.�// \ V.bc/. If a prime ideal q in B contains b, then clearly qc

contains bc and Ker.�/, so ��.V .b// � V.Ker.�//\V.bc/. For the opposite inclusion, notice
V.Ker.�//\V.bc/ D V.Ker.�/Cbc/ D V.bc/. By the claim, if a prime ideal p of A contains
bc , then �.p/ is a prime containing b. This shows �� W Y ! V.Ker.�// is a closed map, so is
a homeomorphism of Y onto V .Ker.�//. Since p � Ker.�/, ��1.�.p// D p C Ker.�/ D p;
hence, p 2 ��.V .b// and ��.V .b// D V.��1.b//. This shows that �� is a homeomorphism
from Y to V.Ker.�//.

In particular, natural surjective homomorphism � W A ! A=N induces homeomorphism
�� from Spec.A/ to Spec.A=N/ for the Zariski topology, observing V.N/ D Spec.A/.

v) By (iii),X D ��.Y / D ��.V .0// D V.Ker.�// if and only if Ker.�/ � N. In particular,
if � is injective, then ��.Y / is dense in X .

vi) Let q be a prime ideal of C . Then . ı �/�.q/ D . ı �/�1.q/ D ��1. �1.q// D

.�� ı  �/.q/.
vii) Spec.A/ is the Sierpiński space on f0;pg. It is easy to show that for any nonzero

commutative rings A;B , prime ideals of the direct product A � B are of the form p � B or
A � q where p and q are prime ideals of A and B respectively. Therefore, Spec.B/ is the
discrete topology on fN0 �K;A=p � 0g. Since ��.N0 �K/ D p and ��.A=p � 0/ D 0, �� is a
bijective continuous function, but clearly not a homeomorphism.

1.22. Let A D
Qn

iD1Ai be the direct product of rings Ai . Show that Spec.A/ is the dis-
joint union of open (and closed) subspaces Xi , where Xi is canonically homeomorphic with
Spec.Ai/.

Conversely, let A be any ring. Show that the following statements are equivalent:

i) X D Spec.A/ is disconnected.
ii) A Š A1 � A2 where neither of the rings A1, A2 is the zero ring.

iii) A contains an idempotent ¤ 0; 1.

In particular, the spectrum of a local ring is always connected (Exercise 12)
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Solution. It is easy to show that every ideals of A is of the form a1 � � � � � an where each ai is
an ideal of Ai , and every prime ideal of A is of the form A1 � � � � �Ai�1 � p �AiC1 � � � � �An

where p is a prime ideal of Ai . Let

Xi ´ V.A1 � � � � � Ai�1 � 0 � AiC1 � � � � � An/

for each 1 � i � n. Clearly, A D
`n

iD1Xi as a set. Since

Xi D A n .X1 [ � � � [Xi�1 [XiC1 [ � � � [Xn/ ;

each Xi is both open and closed. Let S be subset of A. Then,

S \Xi D V.A1 � � � � � Ai�1 � ai � AiC1 � � � � � An/

for an ideal ai � Ai for each 1 � i � n if and only if S D V.a1 � � � � � an/. Therefore,
A D

`n
iD1Xi as a topology. Consider the canonical projection �i W A ! Ai . Since Ker.�/ D

A1 � � � � �Ai�1 � 0�AiC1 � � � � �An, the induced continuous map �� W Spec.Ai/ ! Spec.A/
is a homeomorphism of Spec.Ai/ into Xi by Exercise 1.22.

By the previous discussion, (ii) clearly implies (i). Since .1; 0/ 2 A1 �A2 is an idempotent,
(ii) also implies (iii). Conversely, if A contains an idempotent e ¤ 0; 1, then by the Chines
Remainder Theorem (Proposition 1.10), we get

A Š A=.e.e � 1// D A=.e/.e � 1/ Š A=.e/ � A=.e � 1/;

since .e/ C .e � 1/ D .1/. This shows that (ii) and (iii) are equivalent. The remaining part,
which is actually the hardest one, is to show (i) ) (ii) or (iii). Firstly, we shall prove a lemma.

Lemma. Let A be a ring. For a; b 2 A, if .a/ C .b/ D .1/, then .ak/ C .b/ D .1/ for any
integer k � 1.

Proof. Induction on k. The case for k D 1 is trivial; there are c1; d1 2 A satisfying c1aCd1b D

1. For k > 1, by the induction hypothesis, there exist ck�1; dk�1 2 A so that ck�1a
k�1 C

dk�1b D 1. Then,

1 D .c1aC d1b/.ck�1a
k�1

C dk�1b/ D c1ck�1a
k

C .c1dk�1 C d1ck�1a
k�1

C d1dk�1b/b:

Now, suppose Spec.A/ is disconnected. There exist two ideals a1; a2 ofA so that Spec.A/ D

V.a1/[V.a2/ and V.a1/\V.a2/ D ¿. There is no harm assuming r.a1/ D a1 and r.a2/ D a2

(Exercise 1.15). Let N be the nilradical of A. Since V.a1/ [ V.a2/ D V.a1 \ a2/, we get
a1 \ a2 � N. However, r.a1 \ a2/ D r.a1/ \ r.a2/ D a1 \ a2, so a1 \ a2 D N, for
a1 \ a2 is itself the intersection of all prime ideals in A. Moreover, because V.a1/ \ V.a2/ D

V.a1 C a2/ D ¿, we have a1 C a2 D .1/. Therefore, due to the Chinese Remainder Theorem,

A=N D A=a1a2 Š A=a1 � A=a2:

Hence, A=N has an idempotent .N1; N0/, so there exists e 2 A so that e2 �e D n for some n 2 N.
Since n is nilpotent, there is some positive integer k so that nk D 0, implying ek.e � 1/k D 0.
However, by the lemma, .e/k C .1 � e/k D .1/, so by the Chinese Remainder Theorem again,

A Š A=.e/k.1 � e/k Š A=.e/k � A=.1 � e/k:

In particular, a local ring contains no idempotent (Exercise 1.12), so the spectrum of a local
ring must be connected.
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1.23. Let A be a Boolean ring (Exercise 11), and let X D Spec.A/.

i) For each f 2 A, the set Xf (Exercise 17) is both open and closed in X .
ii) Let f1; : : : ; fn 2 A. Show that Xf1

[ � � � [Xfn
D Xf for some f 2 A.

iii) The sets Xf are the only subsets of X which are both open and closed.
iv) X is a compact Hausdorff space.

Solution. i) We only need to showXf is closed. Since f .f �1/ D 0 and .f /C.f �1/ D .1/,
every prime ideal of A contains only one of f and f � 1. Therefore, Xf D V.f � 1/.

ii) By Exercise 1.11, every finitely generated ideal in A is principal. Therefore, there exists
some f such that .f1; : : : ; fn/ D .f /, so Xf1

[ � � � [Xfn
D Xf .

iii) Suppose V.a/ is a set which are both open and closed. Since Xf forms a basis for
Spec.A/, there are family of sets fXf gf 2S for some subset S of A such that V.a/ D

S
f 2S Xf .

However, closed subspace of quasi-compact space is also quasi-compact, so there are finitely
many f1; : : : ; fn so that V.a/ D Xf1

[ � � � [Xfn
. By (ii), we get V.a/ D Xg for some g 2 A.

iv) We already knowX is quasi-compact (Exercise 1.17). To showX is Hausdorff, consider
two distinct primes p and q of A. Choose some f 2 p n q. Then q must contain f � 1, since
0 D f .f � 1/. Because every prime ideal must contain one of f and f � 1, open sets Xf and
Xf �1 are disjoint, while satisfying q 2 Xf and q 2 Xf �1.

1.24. Let L be a lattice, in which the sup and inf of two elements a; b are denoted by a_b and
a ^ b respectively. L is a Boolean lattice (or Boolean algebra) if

i) L has a least element and a greatest element (denoted by 0, 1 respectively).
ii) Each of _;^ is distributive over the other.

iii) Each a 2 L has a unique “complement” a0 2 L such that a _ a0 D 1 and a ^ a0 D 0.

(For example, the set of all subsets of a set, ordered by inclusion, is a Boolean lattice.)

Let L be a Boolean lattice. Define addition and multiplication in L by the rules

aC b D .a ^ b 0/ _ .a0
^ b/; ab D a ^ b:

Verify that in this way L becomes a Boolean ring, say A.L/.

Conversely, starting from a Boolean ring A, define an ordering on A as follows: a 6 b

means that a D ab. Show that, with respect to this ordering, A is a Boolean lattice.

Solution. Let a; b; c be arbitrary elements of L. Clearly, a^ b D b ^ a and a_ b D b _ a, so
the addition and multiplication of A.L/ are commutative. Notice 00 D 1 and 10 D 0. Using the
definition of supremum and infimum, it is easy to show that the associativity laws for ^ and _

hold; a _ .b _ c/ D .a _ b/ _ c and a ^ .b ^ c/ D .a ^ b/ ^ c. Now, we shall prove two
lemmas.

Lemma 1 (De Morgan’s Law). Let L be a Boolean lattice. Then .a _ b/0 D a0 ^ b 0 and
.a ^ b/0 D a0 _ b 0 for any a; b 2 L.

Proof. .a_b/_ .a0 ^b 0/ D Œ.a_a0/_b�^ Œa_ .b_b 0/� D .1_b/^ .a_1/ D 1^1 D 1, and
.a_b/^.a0 ^b 0/ D Œ.a^a0/_.b^a0/�^ Œ.a^b 0/_.b^b 0/� D Œ0_.b^a0/�^ Œ.a^b 0/_0� D

.b ^ a0/ ^ .a ^ b 0/ D .a ^ a0/ ^ .b ^ b 0/ D 0 ^ 0 D 0. Therefore, by the uniqueness of
complement, we have .a _ b/0 D a0 ^ b 0. By switching the position of a0 with a0, and b 0 with
b in .a _ b/0 D a0 ^ b 0, we get .a ^ b/0 D a0 _ b 0.
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Lemma 2. Let L be a Boolean lattice. Then .a ^ b 0/ _ .a0 ^ b/ D .a _ b/ ^ .a ^ b/0.

Proof. Using Lemma 1, .a^b 0/_.a0^b/ D .a_.a0^b//^.b 0_.a0^b// D .a_b/^.b 0_a0/ D

.a _ b/ ^ .a ^ b/0.

We claim the addition ‘C’ is associative. Using the lemmas, we have

.aC b/C c D ..aC b/ ^ c 0/ _ ..aC b/0 ^ c/

D ...a ^ b 0/ _ .a0
^ b// ^ c 0/ _ ...a _ b/0 _ .a ^ b// ^ c/

D .a ^ b 0
^ c 0/ _ .a0

^ b ^ c 0/ _ .a0
^ b 0

^ c/ _ .a _ b _ c/:

Observe the last expression is independent of the order of a; b; c, so the addition is associative.
The additive identity is the least element 0, since

aC 0 D .a ^ 1/ _ .a0
^ 0/ D a _ 0 D a:

Similarly, the multiplicative identity is the greatest element 1; a1 D a ^ 1 D a. Lastly, the
distributive law holds, because

ab C ac D .a ^ b ^ .a ^ c/0/ _ ..a ^ b/0 ^ a ^ c/

D .a ^ b ^ .a0
_ c 0// _ ..a0

_ b 0/ ^ a ^ c/

D .b ^ .a ^ c 0// _ ..b 0
^ a/ ^ c/

D a ^ ..b ^ c 0/ _ .b 0
^ c//

D a.b C c/:

Since a2 D a ^ a D a, this shows that A.L/ is a Boolean ring.
Conversely, assume A is a Boolean ring. Then 1 is the greatest element since a D a1 for

any a 2 A. Because 0 D 0a for all a 2 A, 0 is the least element. Notice a.a C b C ab/ D a

and b.a C b C ab/ D b (Exercise 1.11). Moreover, if c 2 A satisfies a D ac and b D bc,
then .a C b C ab/c D a C b C ab. Similarly, it is easy to see that .ab/a D .ab/b D ab,
and if d 2 A satisfies d D da D db, then d D .ab/d . Therefore, a _ b D a C b C ab and
a ^ b D ab. Using this fact,

a ^ .b _ c/ D a.b C c C bc/

D ab C ac C abc

D ab C ac C a2bc

D ab C ac C .ab/.ac/

D .a ^ b/ _ .a ^ c/;

and

.a _ b/ ^ .a _ c/ D .aC b C ab/.aC c C ac/

D aC bc C abc

D a _ .b ^ c/:

The complement of a is a0 ´ 1�a, since a_a0 D aC.1�a/Ca.1�a/ D 1 and a.1�a/ D 0.
This shows that A is a Boolean lattice.

1.25. From the last two exercises deduce Stone’s theorem, that every Boolean lattice is isomor-
phic to the lattice of open-and-closed subsets of some compact Hausdorff topological space.
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Solution. Let L be a Boolean lattice. Then by Exercise 24, we can view L as a Boolean ring
A.L/where the order is given by a 6 b , a D ab. Recall Spec.A.L// is a compact Hausdorff
topological space, and Xa ´ Spec.A.L//nV.a/ is an open-and-closed subset for each a 2 A.
Let B ´ fXa � Spec.A.L// W a 2 Ag, and endow order on B with respect to inclusion. Then
B becomes a Boolean lattice, since

� X1 D Spec.A.L// is the greatest, X0 D ; is the least element,

� Xa _Xb D Xa [Xb D XaCbCab (* Exercise 1.11),

� Xa ^Xb D Xa \Xb D Xab,

� Each ^, _ is distributive, for each \, [ is,

� X 0
a D X.1�a/.

We claim that Xa � Xb if and only if a � b. In particular, Xa D Xb if and only if a D b.
Only the forward direction is non-trivial. If Xa � Xb, then r.a/ � r.b/. But A.L/ is boolean,
so .a/ � .b/. Therefore, there is some x 2 A.L/ so that a D xb. Because a D a2 D xab

and ab D .xab/b D xab, we finally get a D ab. Therefore, a map  W L ! B defined
by a ‘ Xa is a well-defined bijection, since it is clearly surjective. Actually, it is a lattice
isomorphism; observe

 .a ^ b/ D  .ab/ D Xab D Xa ^Xb; and
 .a _ b/ D  .aC b C ab/ D XaCbCab D Xa _Xb:

This ends the proof.

1.26. Let A be a ring. The subspace of Spec.A/ consisting of the maximal ideals of A, with
the induced topology, is called the maximal spectrum of A and is denoted by Max.A/. For
arbitrary commutative rings it does not have the nice functorial properties of Spec.A/ (see
Exercise 21), because the inverse image of a maximal ideal under a ring homomorphism need
not be maximal.

Let X be a compact Hausdorff space and let C.X/ denote the ring of all real-valued contin-
uous functions on X (add and multiply functions by adding and multiplying their values). For
each x 2 X , let mx be the set of all f 2 C.X/ such that f .x/ D 0. The ideal mx is maximal,
because it is the kernel of the (surjective) homomorphism C.X/ ! R which takes f to f .x/.
If eX denotes Max.C.X//, we have therefore defined a mapping � W X ! eX , namely x ‘ mx.

We shall show that � is a homeomorphism of X onto eX .

i) Let m be any maximal ideal of C.X/, and let V D V.m/ be the set of common zeros of
the functions in m: that is,

V D fx 2 X W f .x/ D 0 for all f 2 mg:

Suppose that V is empty. Then for each x 2 X there exists fx 2 m such that fx.x/ ¤ 0.
Since fx is continuous, there is an open neighborhood Ux of x inX on which fx does not
vanish. By compactness a finite number of the neighborhoods, say Uxi

; : : : ; Uxn
coverX .

Let
f D f 2

x1
C � � � C f 2

xn
:

Then f does not vanish at any point of X , hence is a unit in C.X/. But this contradicts
f 2 m, hence V is not empty.
Let x be a point of V . Then m � mx , hence m D mx because m is maximal. Hence �
is surjective.
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ii) By Urysohn’s lemma (this is the only non-trivial fact required in the argument) the con-
tinuous functions separate the points of X . Hence x ¤ y ) mx ¤ my , and therefore �
is injective.

iii) Let f 2 C.X/; let
Uf D fx 2 X W f .x/ ¤ 0g

and let eUf D fm 2 QX W f … mg

Show that �.Uf / D eUf . The open sets Uf (resp. eUf ) form a basis of the topology of X
(resp. eX ) and therefore � is a homeomorphism.
Thus X can be reconstructed from the ring of functions C.X/.

Solution. Suppose m is in �.Uf /. Then m D mx for some x 2 X such that f .x/ ¤ 0. Hence,
f … mx, so �.Uf / � eUf . Conversely, suppose n 2 eUf . Since � is surjective, there is some
y 2 X so that n D my . Then f .y/ ¤ 0, so y is in Uf . This shows �.Uf / D eUf .

Let Y ´ Spec.C.X//. For each f 2 C.X/, notice eUf D eX \ Yf . Since the open sets Yf

of Y form a basis for the topology of Y by Exercise 1.17, the open sets eUf form a basis for the
subspace eX of Y . For each x 2 X , x 2 Ug for any constant function g, so open sets Uf cover
X . Also, for any f; g 2 C.X/, observe Ufg D Uf \ Ug . Therefore, open sets Uf form a basis
for X .

1.27. Let k be an algebraically closed field and let

f˛.t1; : : : ; tn/ D 0

be a set of polynomial equations in n variables with coefficients in k. The set X of all points
x D .x1; : : : ; xn/ 2 kn which satisfy these equations is an affine algebraic variety.

Consider the set of all polynomials g 2 kŒt1; : : : ; tn� with the property that g.x/ D 0 for all
x 2 X . This set is an ideal I.X/ in the polynomial ring, and is called the ideal of the variety
X . The quotient ring

P.X/ D kŒt1; : : : ; tn�=I.X/

is the ring of polynomial functions on X , because two polynomials g; h define the same poly-
nomial function on X if and only if g � h vanishes at every point of X , that is, if and only if
g � h 2 I.X/.

Let �i be the image of ti in P.X/. The �i (1 6 i 6 n) are the coordinate functions on
X : if x 2 X , then �i.x/ is the i th coordinate of x. P.X/ is generated as a k-algebra by the
coordinate functions, and is called the coordinate ring (or affine algebra) of X .

As in Exercise 26, for each x 2 X let mx be the ideal of all f 2 P.X/ such that f .x/ D 0;
it is a maximal ideal of P.X/. Hence, if eX D Max.P.X//, we have defined a mapping
� W X ! eX , namely x ‘ mx.

It is easy to show that � is injective: if x ¤ y, we must have xi ¤ yi for for some i
(1 6 i 6 n), and hence �i � xi is in mx, but not in my , so that mx ¤ my . What is less obvious
(but still true) is that � is surjective. This is one form of Hilbert’s Nullstellensatz (see Chapter
7).

Solution. (It is too hard to solve this problem without assuming any result in Chapter 7) As-
sume Corollary 7.10. Then for any m 2 eX , we have P.X/=m Š k since P.X/ is a finitely
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generated k-algebra generated by �1; : : : �n. Let ai be the image of �i in k by the homo-
morphism P.X/ � P.X/=m Š k, and a ´ .a1; : : : ; an/ 2 kn. It is easy to see that
.�1 � a1; : : : ; �n � an/ is a maximal ideal of P.X/. Since ma contains .�1 � a1; : : : ; �n � an/,
we get ma D .�1 � a1; : : : ; �n � an/. Then m is a maximal ideal which contains ma D

.�1 � a1; : : : ; �n � an/. Therefore, m D �.a/.

1.28. Let f1; : : : ; fm be elements of kŒt1; : : : ; tn�. They determine a polynomial mapping � W

kn ! km: if x 2 kn, the coordinates of �.x/ are f1.x/; : : : ; fm.x/.

Let X , Y be affine algebraic varieties in kn, km respectively. A mapping � W X ! Y is said
to be regular if � is the restriction to X of a polynomial mapping from kn to km.

If � is a polynomial function on Y , then � ı � is a polynomial function on X . Hence �
induces a k-algebra homomorphism P.Y / ! P.X/, namely � ‘ � ı �. Show that in this
way we obtain a one-to-one correspondence between the regular mappings X ! Y and the
k-algebra homomorphisms P.Y / ! P.X/.

Solution. For a given regular map � W X ! Y , let �? W P.Y / ! P.X/ be the induced k-
algebra homomorphism given by � ‘ � ı �. Then � ‘ �? is a map from the set of regular
maps X ! Y to the set of k-algebra homomorphisms P.Y / ! P.X/. Now, we construct an
inverse of � ‘ �?. Suppose ' W P.Y / ! P.X/ is a k-algebra homomorphism. Then we can
find a k-algebra homomorphism Q' W kŒt 01; : : : ; t

0
m� ! kŒt1: : : : ; tn� so that the following diagram

commutes2

kŒt 01; : : : ; t
0
m� kŒt1; : : : ; tn�

P.Y / P.X/:

Q'

'

Define a polynomial map '� W kn ! km by

'�.x/ ´ . Q'.t 01/.x/; : : : ; Q'.t 0m/.x//:

For any f 2 kŒt 01; : : : ; t
0
m�, notice Q'.f / D f . Q'.t 01/; : : : ; Q'.t 0m//. Since the previous diagram

commutes, if f 2 I.Y / then f . Q'.t 01/; : : : ; Q'.t 0m// is in I.X/. Therefore, for x 2 X , we have
f .'�.x// D 0 for any f 2 I.Y /, so '�.X/ � Y . This shows '� W X ! Y is regular, and
we get a map ' ‘ '� from the set of k-algebra homomorphisms P.Y / ! P.X/ to the set of
regular maps X ! Y .

We claim that ' ‘ '� is the two-sided inverse of � ‘ �?. For any k-algebra homomor-
phism ' W P.Y / ! P.X/, g 2 P.Y /, and x 2 X ,

.'�/?.g/.x/ D .g ı '�/.x/

D g. Q'.t 01/.x/; : : : ; Q'.t 0m/.x//

D '.g/.x/;

observing Q'. Qg/ D Qg. Q'.t 01/; : : : ; Q'.t 0m// where Qg 2 kŒt 01; : : : ; t
0
n� is a preimage of g. There-

fore, .'�/? D '. Conversely, suppose � W X ! Y is a regular map. Then �.x/ D

2One may construct Q' as follows. Let �i be the image of t 0i in P.Y / and �j be the image of tj in P.X/. Then
'.�i / D pi .�1; : : : ; �n/ for some polynomial pi 2 kŒt1; : : : ; tn�. By letting t 0i ‘ pi .t1; : : : ; tn/, we get a desired
k-algebra homomorphism.
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.f1.x/; : : : ; fm.x// where fi 2 kŒt1; : : : ; tm�. For x 2 X , we have

.�?/
�.x/ D . Q�?.t

0
1/.x/; : : : ;

Q�?.t
0
m/.x//

D .f1.x/; : : : ; fm.x//

D �.x/;

observing �?.g/ D g ı � D g.f1; : : : ; fm/ for any g 2 P.Y / and hence Q�?.t
0
i / D fi . There-

fore, .�?/
� D � This shows that � ‘ �? and ' ‘ '� are bijections.
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