Solution to Atiyah and MacDonald # Chapter 1. Rings and Ideals Jaehyeon Lee Last update: May 12, 2024 This is a solution to Exercise problems in Chapter 1 of "Introduction to Commutative Algebra" written by M. F. Atiyah and I. G. MacDonald. You can find the updated version and solutions to other chapters on my personal website: [https://ijhlee0511.github.io]. **WARNNING** This solution is written for self-study purposes and to consolidate my understanding. **I do not take responsibility for any disadvantages resulting from the use of this solution. It is at your own risk.** If you find any typos or errors in this solution, please feel free to contact me via email at [ijhlee0511@gmail.com] or [ijhlee0511@kaist.ac.kr]. I received help from my friend Yeonjin Kim when writing the solution of Problem 2. ### **Exercises and Solutions** **1.1.** Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit. **Solution**. There exists some n > 0 such that $x^n = 0$. Then $(1 + x) \sum_{k=0}^{n-1} (-x)^k = 1 + (-x)^n = 1$. Moreover, if u is a unit and x is nilpotent, then $u^{-1}(u+x) = 1 + (u^{-1}x)$ is a sum of 1 and a nilpotent element, so u + x is also unit. - **1.2.** Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx_n \in A[x]$. Prove that - i) f is a unit in $A[x] \Leftrightarrow a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent. - ii) f is nilpotent $\Leftrightarrow a_0, a_1, \dots, a_n$ are nilpotent. - iii) f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0. - iv) f is said to be *primitive* if $(a_0, a_1, \ldots, a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive $\Leftrightarrow f$ and g are primitive. **Solution**. i) Assume $g(x) = b_0 + b_1 x + \cdots + b_m x^m$ is the inverse of x. We claim that $a_n^{r+1}b_{m-r} = 0$ for $0 \le r \le m$. Induction on r. When r = 0, it is clear that $a_nb_m = 0$. For r > 0, consider $f^{r+1}g$. Observe the coefficient of $x^{n(r+1)+m-r}$ is $\sum_{i=0}^r a_n^{i+1} a_{n-1}^{r-i} b_{m-i}$, which is $a_n^{r+1}b_{m-r}$ by the induction hypothesis. But $f^{r+1}g = f^r = (a_0 + a_1x + \cdots + a_nx^n)^r$, so $a_n^{r+1}b_{m-r}$ is zero. We get $a_n^mg = 0$ by the claim, so a_n is nilpotent since g is a unit. Then $f - a_nx^n$ is a unit in A[x] by Exercise 1.1. Repeating this process, a_1, \ldots, a_n are all nilpotent, and a_0 is a unit in A. The opposite direction is a direct consequence of Exercise 1.1. - ii) Assume f is nilpotent. In fact, a sum of any tow nilpotent elements is nilpotent; if $a^n = 0$ and $b^m = 0$ for some n, m > 0, $(a + b)^{n+m} = 0$. Notice a_0 must be nilpotent, since the constant term of f^j is a_0^j for all j > 0. Then $f a_0$ is also nilpotent. Repeating the same argument repeatedly, a_{n-r} is nilpotent for all $0 \le r \le n$. The opposite direction is clear due to the fact that a sum of two nilpotent elements is nilpotent. Then $f a_n x^n$ is a unit in A[x] by Exercise 1.1. Repeating this process, a_1, \ldots, a_n are all nilpotent, and a_0 is a unit in A. The opposite direction is a direct consequence of Exercise 1.1. - iii) Choose a nonzero polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0 and $b_m \neq 0$. We claim that $a_{n-r}g = 0$ for $0 \leq r \leq n$ by induction on r. For r = 0, clearly $a_n b_m = 0$; hence, $a_n g = 0$ because $(a_n g)f = 0$ while $\deg a_n g < m$. In particular, $b_m a_n = 0$. Observe $gf = g(f a_n x^n) = 0$, so by repeating this process we get $b_m a_n = b_m a_{n-1} = \cdots = b_m a_0 = 0$. Therefore, $b_m g = 0$ where b_m is nonzero by the assumption. The converse direction is obvious. - iv) Let $f = a_0 + a_1x + \cdots + a_nx_n$, $g = b_0 + b_1x + \cdots + b_mx^m$, and $fg = c_0 + c_1x + \cdots + c_lx^l$. Since $(c_0, c_1, \ldots, c_l) \subseteq (a_0, a_1, \ldots, a_n)$ and $(c_0, c_1, \ldots, c_l) \subseteq (b_0, b_1, \ldots, b_m)$, if fg is primitive, then f and g are primitive. Conversely, suppose f and g are primitive but g is not. Let m be a maximal ideal of f containing f and f of f and f in f and f are nonzero. However, the image f of f is zero in f in f is an integral domain, it is a contradiction. - **1.3.** Generalize the results of Exercise 2 to a polynomial ring $A[x_1, \ldots, x_r]$ in several indeterminates **Solution**. We claim following generalized results of Exercise 1.2. **Claim.** Let A be a ring and let $A[x_1, ..., x_r]$ be the ring of polynomials in an indeterminate $x_1, ..., x_r$, with coefficients in A. Let $$f = \sum_{\underline{i} \in \mathbf{Z}_{\geq 0}^r} a_{\underline{i}} \underline{x} \in A[x_1, \dots, x_r].$$ Here, we set $\underline{x}^{\underline{i}} = x_1^{i_1} \cdots x_r^{i_r}$ and $\underline{i} = (i_1, \cdots, i_r)$. Then - i) f is a unit in $A[x_1, \ldots, x_r] \Leftrightarrow a_{\underline{0}}$ is a unit in A and $a_{\underline{i}}$ are nilpotent where $\underline{0} = (0, \cdots, 0)$ and $\underline{i} \in \mathbb{Z}_{\geq 0}^r \setminus \{\underline{0}\}$. - ii) f is nilpotent $\Leftrightarrow a_{\underline{i}}$ is nilpotent for all $\underline{i} \in \mathbb{Z}_{\geq 0}^r$. - iii) f is a zero-divisor \Leftrightarrow there exists $a \neq 0$ in A such that af = 0. - iv) f is said to be primitive if $(a_{\underline{i}} : \underline{i} \in \mathbf{Z}_{\geq 0}^r) = (1)$. If $f, g \in A[x_1, \dots, x_r]$, then fg is primitive $\Leftrightarrow f$ and g are primitive. Statement (i), (ii), and (iii) of the claim can be shown by tedious repetitions of induction on r, identifying f as a polynomial in $A[x_1, \ldots, x_{r-1}][x_r]$; i.e., polynomial ring in an indeterminate x_r , with coefficients in $A[x_1, \ldots, x_{r-1}]$. Proof of iv) is just a simple adaptation of the proof of (iv) in Exercise 1.2. **1.4.** In the ring A[x], the Jacobson radical is equal to the nilradical. **Solution.** Let \mathfrak{N} be the nilradical of A[x] and \mathfrak{N} be the Jacobson radical of A[x]. Since every maximal ideal is prime, $\mathfrak{N} \subseteq \mathfrak{N}$. Now consider $f \in \mathfrak{N}$. Then by Proposition 1.9, 1 + fx is a unit, so a_0, a_1, \dots, a_n are all nilpotent, implying $f \in \mathfrak{N}$ by Exercise 1.2. - **1.5.** Let A be a ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficients in A. Show that - i) f is a unit in $A[[x]] \Leftrightarrow a_0$ is a unit in A. - ii) If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is the converse true? (See Chapter 7, Exercise 2.) - iii) f belongs to the Jacobson radical of $A[[x]] \Leftrightarrow a_0$ belongs to the Jacobson radical of A. - iv) The contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A, and \mathfrak{m} is generated by \mathfrak{m}^c and x. - v) Every prime ideal of A is the contraction of a prime ideal of A[[x]]. **Solution**. i) Suppose f is a unit, and $g = \sum_{m=0}^{\infty} b_m x^m$ is the multiplicative inverse of f. Then $a_0 b_0 = 1$, so a_0 is a unit in A. Conversely, suppose a_0 is a unit. Let $$b_n = \begin{cases} a_0^{-1}, & \text{if } n = 0; \\ -a_0^{-1} \sum_{j=1}^n a_j b_{n-j}, & \text{if } n > 0. \end{cases}$$ Then $g = \sum_{m=0}^{\infty} b_m x^m$ is the multiplicative inverse of f, so f is a unit in A[[x]]. ii) Induction on n. Assume $f^m = 0$ for some m > 0. Then $a_0^m = 0$, so a_0 is nilpotent. For n > 0, $f - a_0 - a_1 x - \dots - a_{n-1} x^{n-1}$ is nilpotent by the induction hypothesis and Exercise 1.2, so a_n is also nilpotent. The converse is not true in general. Let $A = \prod_{i=1}^{\infty} \mathbf{Z}/2^i\mathbf{Z}$ and consider the projection $\pi_i : A \twoheadrightarrow \mathbf{Z}/2^i\mathbf{Z}$. There is an element $a_i \in A$ such that $\pi_i(a_i) = 2 \in \mathbf{Z}/2^i\mathbf{Z}$ for each i, and $p_j(a_i) = 0 \in \mathbf{Z}/2^j\mathbf{Z}$ for every $j \neq i$. Then $a_i^i = 0$ for all i > 0, so a_i is nilpotent. However, the formal power series $f = \sum_{i=0}^{\infty} a_i x^i$ is not nilpotent, since there is no finite m > 0 such that $f^m = 0$. - iii) If f belongs to the Jacobson radical of A[[x]], then 1+bf is a unit in A[[x]] for any $b \in A$. By (i), it implies $1+ba_0$ is a unit in A for any $b \in A$, so a_0 is in the Jacobson radical of A. Conversely, suppose a_0 belongs to the Jacobson radical of A. Then for any $g = \sum_{m=0}^{\infty} b_m x^m \in A[[x]]$, 1+gf is a unit in A[[x]]; equivalently, $1+b_0a_0$ is a unit in A by (i). Because the choice of g is arbitrary, this completes the proof. - iv) For any $f \in A[[x]]$, 1 + xf is a unit by (i), so (x) is contained by every maximal ideal of A[[x]]. Let $\pi: A[[x]] \twoheadrightarrow A[[x]]/(x)$ be the natural projection. Notice there is a natural isomorphism $A[[x]]/(x) \stackrel{\sim}{\to} A$ given by $a_0 + (x) \mapsto a_0$ for each $a_0 \in A$, and the composition $A \hookrightarrow A[[x]] \twoheadrightarrow A[[x]]/(x) \stackrel{\sim}{\to} A$ is actually the identity map on A. Let m be a maximal ideal of A[[x]]. Since m contains (x), the projection $\pi': A[[x]] \twoheadrightarrow A[[x]]/(x) \stackrel{\sim}{\to} A$ sends it to a maximal ideal of A. However, it is the image of m^c via the identity on A, so m^c is a maximal ideal of A. The preimage of $m^c \subseteq A$ via π' is $m^c + (x)$. However, $\pi'(m)$ is m^c , so $m \subseteq m^c + (x)$. Since $m^c \subseteq m$ and $n \in m$, this shows $m = m^c + (x)$. - v) Under the same setting with the solution of (iv), recall $A \hookrightarrow A[[x]] \twoheadrightarrow A[[x]]/(x) \stackrel{\sim}{\to} A$ is the identity map on A. Let $\mathfrak p$ be a prime ideal of A. Then the preimage of $\mathfrak p$ via the projection $\pi': A[[x]] \twoheadrightarrow A[[x]]/(x) \stackrel{\sim}{\to} A$ is also prime in A[[x]]. Then $\mathfrak
p$ is the contraction of $(\pi')^{-1}(\mathfrak p)$. - **1.6.** A ring A is such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element e such that $e^2 = e \neq 0$). Prove that the nilradical and Jacobson radical of A are equal. | Solution . Since every maximal ideal is prime, the Jacobson radical \Re of A always contains the nilradical \Re of A . If A is a zero ring, then the statement holds vacuously, so assume $1 \neq 0$. If $\Re \not\subseteq \Re$, then there exists a nonzero idempotent element e in \Re . Since $e(1-e)$, $1-e$ is a zero divisor; however, $1-e$ must be a unit in A by Proposition 1.9, a contradiction. | |---| | 1.7. Let A be a ring in which every element x satisfies $x^n = x$ for some $n > 1$ (depending on x). Show that every prime ideal in A is maximal. | | Solution . Let \mathfrak{p} be a prime ideal of A . It suffices to show that $(y) + \mathfrak{p} = A$ for any $y \in A \setminus \mathfrak{p}$. For some $m > 1$, we have $y^m = y$, so $y(y^{m-1} - 1) = 0$. Since \mathfrak{p} contains 0, it follows $y^{m-1} - 1 = x$ for some $x \in \mathfrak{p}$. Therefore, $1 = y^{m-1} - x \in (y) + \mathfrak{p}$. This ends the proof. \square | | 1.8. Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements with respect to inclusion. | | Solution . Let \mathcal{P} be a collection of all prime ideals of A , and suppose C is a totally ordered collection of prime ideals in A with respect to inclusion. Assume $xy \in \bigcap_{\mathfrak{p} \in C} \mathfrak{p}$ for some $x, y \in A$. We claim that either $x \in \bigcap_{\mathfrak{p} \in C} \mathfrak{p}$ or $y \in \bigcap_{\mathfrak{p} \in C} \mathfrak{p}$. If not, then there are some $\mathfrak{p}_1, \mathfrak{p}_2 \in C$ such that $x \notin \mathfrak{p}_1$ and $y \notin \mathfrak{p}_2$. Since C is totally ordered with respect to inclusion, we may say $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$. If follows that $y \notin \mathfrak{p}_1$, a contradiction since $xy \in \mathfrak{p}_1$. Therefore, $\bigcap_{\mathfrak{p} \in C} \mathfrak{p}$ is a prime ideal in A , and it is the lower bound for C in P . As a result, assuming Zorn's lemma, P has a minimal element. | | 1.9. Let α be an ideal \neq (1) in a ring A . Show that $\alpha = r(\alpha) \Leftrightarrow \alpha$ is an intersection of prime ideals. | | Solution . If $\alpha = r(\alpha)$, then α is the intersection of prime ideals containing α by Proposition 1.14. Conversely, suppose $\alpha = \bigcap_{\mathfrak{p} \in \mathcal{C}} \mathfrak{p}$ for some collection \mathcal{C} of prime ideals. Observe $r\left(\bigcap_{\mathfrak{p} \in \mathcal{C}} \mathfrak{p}\right) = \bigcap_{\mathfrak{p} \in \mathcal{C}} \mathfrak{p}$; $x^n \in \mathfrak{p}$ implies $x \in \mathfrak{p}$ for each $\mathfrak{p} \in \mathcal{C}$. This completes the proof. \square | | 1.10. Let A be a ring, $\mathfrak N$ its nilradical. Show that the following are equivalent: | | i) A has exactly one prime ideal; ii) every element of A is either a unit or nilpotent; iii) A/N is a field. | | Solution . [i) \Rightarrow ii)] Let m be the unique prime (hence, maximal) ideal of A . If $x \in A$ is not a unit, then there is some maximal ideal containing x ; however, the maximal ideal must be m. Since $\mathfrak{m} = \mathfrak{N}$ by the assumption, it follows that every element of A is either a unit or nilpotent. [ii) \Rightarrow iii)] By the assumption, \mathfrak{N} is maximal, because any ideal containing \mathfrak{N} is either \mathfrak{N} or A . [iii) \Rightarrow i)] Since \mathfrak{N} is the intersection of all prime ideals, \mathfrak{N} becomes the unique prime ideal of A . | | | | 1.11. A ring A is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that i) $2x = 0$ for all $x \in A$; | | 1) $\Delta \lambda = 0$ 101 all $\lambda \in A$, | ii) every prime ideal $\mathfrak p$ is maximal, and $A/\mathfrak p$ is a field with two elements; iii) every finitely generated ideal in A is principal. **Solution.** i) For any $x \in A$, $2x = (2x)^2 = 2x^2 + 2x = 4x$, so 2x = 0. - ii) By Exercise 7, every prime ideal is maximal. Suppose $y \in A$ is not in \mathfrak{p} . Since y(y-1)=0 and \mathfrak{p} contains 0, \mathfrak{p} contains y-1. Therefore, y=1+x for some $x \in \mathfrak{p}$, implying that A/\mathfrak{p} consists of \mathfrak{p} and $1+\mathfrak{p}$. - iii) It suffices to show every ideal generated by two elements is principal. Consider (x, y) for $x, y \in A$. Surprisingly, for any $a, b \in A$, we have ax + by = (ax + by)(x + y + xy), so (x, y) = (x + y + xy). - **1.12.** A local ring contains no idempotent $\neq 0, 1$ **Solution**. Suppose a local ring A with the maximal ideal \mathfrak{m} has an idempotent e, which is neither 0 nor 1 (implying A is nonzero). Notice e is a zero divisor, for e(1-e)=0. Therefore the unique maximal ideal \mathfrak{m} must contains e. By Proposition 1.9, 1-e must be a unit in A, since the Jacobson radical of A is just \mathfrak{m} . However, it is a contradiction for a zero divisor to be a unit. **1.13.** Let K be a field and let Σ be the set of all irreducible monic polynomials f in one indeterminate with coefficients in K. Let A be the polynomial ring over K generated by indeterminates x_f , one for each $f \in \Sigma$. Let α be the ideal of A generated by the polynomials $f(x_f)$ for all $f \in \Sigma$. Show that $\alpha \neq (1)$. Let m be a maximal ideal of A containing α , and let $K_1 = A/\mathfrak{m}$. Then K_1 is an extension field of K in which each $f \in \Sigma$ has a root. Repeat the construction with K_1 in place of K, obtaining a field K_2 , and so on. Let $L = \bigcup_{n=1}^{\infty} K_n$. Then L is a field in which each $f \in \Sigma$ splits completely into linear factors. Let \bar{K} be the set of all elements of L which are algebraic over K. Then \bar{K} is an algebraic closure of K. **Solution**. Suppose $\alpha = (1)$. There there exist some $f_1, \ldots, f_n \in \Sigma$ and $g_1, \ldots, g_n \in A$ such that $$g_1 f_1(x_{f_1}) + \cdots + g_n f_n(x_{f_n}) = 1.$$ Write x_i instead of x_{f_i} . The polynomials g_i 's involve only finitely many variables, so we can regard them as polynomials of x_1, \ldots, x_N for some sufficiently large $N \ge n$. Now we have $$g_1(x_1,...,x_N) f_1(x_1) + \cdots + g_n(x_1,...,x_N) f_n(x_n) = 1$$ By the basic field theory, there is a finite field extension K' so that $\alpha_i \in K'$ is a root for each f_i . Let $x_i = \alpha_i$ for $1 \le i \le n$ and $x_{n+1} = \cdots = x_N = 0$. Then we get a contradiction; 0 = 1. **1.14.** In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that the set Σ has maximal elements and that every maximal element of Σ is a prime ideal. Hence the set of zero-divisors in A is a union of prime ideals¹. **Solution**. For any given $\mathfrak{b} \in \Sigma$, let Π be a totally ordered subset of Σ with respect to inclusion, in which every element contains \mathfrak{b} . Then $\bigcup_{\alpha \in \Pi} \alpha$ is clearly an ideal consisting of zero divisors, which is an upper bound for every element in Π . Assuming Zorn's lemma, Σ has a maximal element containing \mathfrak{b} . ¹In Antiyah-Macdonald, 0 is also a zero divisor. We claim that maximal elements of Σ are prime. Firstly, observe product of non-zero divisors is also non-zero divisor. Suppose ab is a zero divisor for some non-zero divisors $a,b \in A$. Then there exists some non-zero c so that abc = 0. Since a is a non-zero divisor, bc = 0, which is a contradiction since b is a non-zero divisor. Now, let \mathfrak{p} be a maximal element of Σ , and suppose there exist $x,y \in A \setminus \mathfrak{p}$ such that xy is in \mathfrak{p} . By the maximality of \mathfrak{p} , there are some $p,q \in \mathfrak{p}$ and $a,b \in A$ so that both p+ax and q+by are non-zero divisor. However, (p+ax)(q+by) is in \mathfrak{p} , which contradicts the previous observation that non-zero divisors are multiplicatively closed. - **1.15.** Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that - i) if α is the ideal generated by E, then $V(E) = V(\alpha) = V(r(\alpha))$. - ii) $V(0) = X, V(1) = \emptyset$. - iii) if $(E_i)_{i \in I}$ is any family of subsets of A, then $$V\left(\bigcup_{i\in I}E_i\right)=\bigcap_{i\in I}V(E_i).$$ iv) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A. These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting
topology is called the *Zariski topology*. The topological space X is called the *prime spectrum* of A, and is written $\operatorname{Spec}(A)$. **Solution**. i) Clearly, $V(E) \supseteq V(\alpha) \supseteq V(r(\alpha))$, because $E \subseteq \alpha \subseteq r(\alpha)$. Suppose $\mathfrak{p} \in V(E)$. Then, $E \subseteq \mathfrak{p}$ implies $\alpha \subseteq \mathfrak{p}$, so $\mathfrak{p} \in V(\alpha)$. Assume $\mathfrak{q} \in V(\alpha)$. Since $\mathfrak{q} \supseteq \alpha$, $\mathfrak{q} = r(\mathfrak{q}) \supseteq r(\alpha)$. As a result, $V(E) \subseteq V(\alpha) \subseteq V(r(\alpha))$. - ii) It is trivial. - iii) Suppose $\mathfrak{p} \in V\left(\bigcup_{i \in I} E_i\right)$. Then, $E_i \subseteq \mathfrak{p}$ for each $i \in I$, so $\mathfrak{p} \in \bigcap_{i \in I} V(E_i)$. Conversely, suppose $\mathfrak{q} \in \bigcap_{i \in I} V(E_i)$. Since $\mathfrak{q} \supseteq E_i$ for each $i \in I$, $\mathfrak{q} \supseteq \bigcup_{i \in I} E_i$, so $\mathfrak{q} \in V\left(\bigcup_{i \in I} E_i\right)$. - iv) Since $r(\alpha b) = r(\alpha \cap b)$, $V(\alpha b) = V(r(\alpha b)) = V(r(\alpha \cap b)) = V(\alpha \cap b)$ by Exercise 1.13 of the main text. Suppose $\alpha \not\subseteq p$ and $b \not\subseteq p$ for some prime ideal p. By Proposition 1.11, $a \cap b$ is not contained in p. Therefore, $V(\alpha \cap b) = V(\alpha b) \subseteq V(\alpha) \cup V(b)$. The reverse inclusion is trivial. - **1.16.** Draw pictures of Spec(\mathbb{Z}), Spec(\mathbb{R}), Spec($\mathbb{R}[x]$), Spec($\mathbb{R}[x]$), Spec($\mathbb{R}[x]$). - **1.17.** For each $f \in A$, let X_f denote the complement of V(f) in $X = \operatorname{Spec}(A)$. The sets X_f are open. Show that they form a basis of open sets for the Zariski topology, and that - i) $X_f \cap X_g = X_{fg}$; - ii) $X_f = \emptyset \Leftrightarrow f$ is nilpotent; - iii) $X_f = X \Leftrightarrow f$ is a unit; - iv) $X_f = X_g \Leftrightarrow r((f)) = r((g));$ - v) X is quasi-compact (that is, every open covering of X has a finite sub-covering). - vi) More generally, each X_f is quasi-compact. - vii) An open subset of X is quasi-compact if and only if it is a finite union of sets X_f . **Solution**. For any $\mathfrak{p} \in \operatorname{Spec}(A)$, \mathfrak{p} is a proper ideal of A, so there exists some $f \in A$ not in \mathfrak{p} , and hence $\mathfrak{p} \in X_f$. Now suppose $\mathfrak{q} \in X_f \cap X_g$ for $f, g \in A$. Since $f \notin \mathfrak{q}$ and $g \notin \mathfrak{q}$, $fg \notin \mathfrak{q}$, so $\mathfrak{q} \in X_{fg}$. Moreover, for any $\mathfrak{p} \in X_{fg}$, $fg \notin \mathfrak{p}$, and therefore $f \notin \mathfrak{p}$ and $g \notin \mathfrak{q}$. As a result, $\mathfrak{q} \in X_{fg} = X_f \cap X_g$, and $\{X_f : f \in A\}$ forms a basis of open sets for the Zariski topology. - i) We have proven it already. - ii) By Proposition 1.8, it is obvious. - iii) $X_f = X$ if and only if every prime ideal does not contain f. By (1.5), every non-unit of A is contained in a maximal ideal, so $X_f = X$ if and only if f is a unit. - iv) $X_f = X_g$ if and only if V(f) = V(g). By Proposition 1.14, the radicals of (f) and (g) are the intersections of the prime ideals which contain f and g, respectively, implying r((f)) = r(g). Conversely, suppose r(f) = r(g). Then, $$V(f) = V(r(f)) = V(r(g)) = V(g),$$ by Exercise 1.15, so $X_f = X_g$. v) Suppose $X = \bigcup_{i \in I} (X \setminus V(E_i))$ for some family of subsets $\{E_i\}_{i \in I}$ of A. Then, $$\bigcap_{i\in I} V(E_i) = V\left(\bigcup_{i\in I} E_i\right) = \varnothing,$$ by Exercise 1.15. Therefore, $A \bigcup_{i \in I} E_i = (1)$ (that is, the ideal generated by $\bigcup_{i \in I} E_i$ is A); otherwise, there exists some maximal ideal containing $\bigcup_{i \in I} E_i$ by Proposition 1.4. As a result, we can choose elements E_1, E_2, \dots, E_n of $\{E_i\}_{i \in I}$ such that $$x_1e_1 + x_2e_2 + \cdots + x_me_m = 1$$ where $x_1, x_2, \ldots, x_m \in A$ and $e_1, \ldots, e_m \in \bigcup_{j=1}^n E_j$ for $1 \le j \le n$. Now $\{X \setminus V(E_j)\}_{j=1}^n$ is a finite sub-covering of X. vi) First we claim that $V(E) \subseteq V(F)$ if and only if $r(AE) \supseteq r(AF)$ for subsets E, F of A. Since the radicals of AE and AF are the intersections of the prime ideals which contain E and F respectively, the forward direction is obvious. The opposite direction is also clear, since $V(E) = V(r(AE)) \subseteq V(r(AF)) = V(F)$ by Exercise 1.15. Assume $X_f \subseteq \bigcup_{i \in I} (X \setminus V(E_i))$ for some family of subsets $\{E_i\}_{i \in I}$ of A. Equivalently, $$V(f) \supseteq \bigcap_{i \in I} V(E_i) = V\left(\bigcup_{i \in I} E_i\right);$$ that is, $$(f) \subseteq r(f) \subseteq r\left(A \bigcup_{i \in I} E_i\right).$$ Then we can choose elements E_1, E_2, \ldots, E_n of $\{E_i\}_{i \in I}$ such that $f^l = x_1e_1 + x_2e_2 + \cdots + x_me_m$ for some $l > 0, x_1, x_2, \ldots, x_m \in A$ and $e_1, e_2, \ldots, e_m \in \bigcup_{j=1}^n E_j$, so that $(f) \subseteq r(A \bigcup_j^n E_j)$. Therefore $X_f \subseteq \bigcup_{j=1}^n (X \setminus V(E_j))$. | vii) Since X_f is quasi-compact, if an open subset U of X is a finite union of sets of t | the | |--|-------| | form X_f , then clearly U is quasi-compact. Conversely, assume U is quasi-compact. Since X_f | X_f | | forms a basis for the Zariski topology, U can be expressed as the union of some subfamily | of | | $\{X_f\}_{f\in A}$. Consequently, U is a finite union of sets of the form X_f . | | - **1.18.** For psychological reasons it is sometimes convenient to denote a prime ideal of A by a letter such as x or y when thinking of it as a point of $X = \operatorname{Spec}(A)$. When thinking of x as a prime ideal of A, we denote it by \mathfrak{p}_x (logically, of course, it is the same thing). Show that - i) the set $\{x\}$ is closed (we say that x is a "closed point") in $Spec(A) \Leftrightarrow \mathfrak{p}_x$ is maximal; - ii) $\overline{\{x\}} = V(\mathfrak{p}_x);$ - iii) $y \in \overline{\{x\}} \Leftrightarrow \mathfrak{p}_x \subseteq \mathfrak{p}_y$; - iv) X is a T_0 -space (this means that if x, y are distinct points of X, then either there is a neighborhood of x which does not contain y, or else there is a neighborhood of y which does not contain x). - **Solution**. i) Suppose $\{x\}$ is closed. Then there exists some maximal ideal \mathfrak{m} of A containing \mathfrak{p}_x . However, $\{x\}$ is singleton, so $\mathfrak{m} = \mathfrak{p}_x$. Conversely, if \mathfrak{p}_x is maximal, then trivially $\{x\} = V(\mathfrak{p}_x)$. - ii) If $x \in V(E)$ for some $E \subseteq A$, then any prime ideal containing \mathfrak{p}_x also belongs to V(E); therefore $V(\mathfrak{p}_x) \subseteq V(E)$. Since $V(\mathfrak{p}_x)$ is contained by every closed set containing x and it is closed itself, we get $\overline{\{x\}} = V(\mathfrak{p}_x)$. - iii) $y \in \overline{\{x\}} = V(\mathfrak{p}_x)$ if and only if $\mathfrak{p}_y \supseteq \mathfrak{p}_x$ by the definition. - iv) Without loss of generality, assume $\mathfrak{p}_x \subsetneq \mathfrak{p}_y$. Then $\mathfrak{p}_y \notin V(\mathfrak{p}_x)$, so $\mathfrak{p}_y \in X \setminus V(\mathfrak{p}_x)$ and $\mathfrak{p}_x \notin X \setminus V(\mathfrak{p}_x)$. - **1.19.** A topological space X is said to be *irreducible* if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that $\operatorname{Spec}(A)$ is irreducible if and only if the nilradical of A is a prime ideal. **Solution**. For any ideal $$\alpha$$ and b of A , if $X \setminus V(\alpha) \neq \emptyset$ and $X \setminus V(b) \neq \emptyset$, then $(X \setminus V(\alpha)) \cap (X \setminus V(b)) = \emptyset \Leftrightarrow \text{if } V(\alpha) \neq \text{Spec}(A) \text{ and } V(b) \neq \text{Spec}(A), \text{ then } V(\alpha) \cup V(b) = V(\alpha b) \neq \text{Spec}(A) \Leftrightarrow \text{if } \alpha \not\subseteq \mathfrak{N} \text{ and } b \not\subseteq \mathfrak{N}, \text{ then } \alpha b \not\subseteq \mathfrak{N} \Leftrightarrow \mathfrak{N} \text{ is prime.}$ - **1.20.** Let X be a topological space. - i) If Y is an irreducible (Exercise 19) subspace of X, then the closure \overline{Y} of Y in X is irreducible. - ii) Every irreducible subspace of X is contained in a maximal irreducible subspace. - iii) The maximal irreducible subspaces of X are closed and cover X. They are called the *irreducible components* of X. What are the irreducible components of a Hausdorff space? - iv) If A is a ring and $X = \operatorname{Spec}(A)$, then the irreducible components of X are the closed sets $V(\mathfrak{p})$, where \mathfrak{p} is a minimal prime ideal of A (Exercise 8). **Solution**. i) Let U_1 , U_2 be open set of X. If $Y \cap U_1 = \emptyset$, then U_1 contains no limit point of Y; hence, $\overline{Y} \cap U_1 = \emptyset$. Therefore, if $\overline{Y} \cap U_1 \neq \emptyset$ and $\overline{Y} \cap U_2 \neq \emptyset$, then $Y \cap U_1 \neq \emptyset$ and $Y \cap U_2 \neq \emptyset$. Since Y is irreducible, we get $Y \cap (U_1 \cap U_2) \neq \emptyset$, so $\overline{Y} \cap (U_1 \cap U_2) \neq \emptyset$. This shows \overline{Y} is also irreducible. - ii) Let J be a collection of all irreducible subspaces of X containing an irreducible subspace $I \subseteq X$, and C be a totally ordered collection of irreducible subspaces in J with respect to inclusion. Suppose there are two disjoint nonempty open sets U_1 and U_2 of $\bigcup_{Y \in C} Y$. Since U_1 is nonempty, there is some $Y_1 \in C$ so that $U_1 \cap Y_1 \neq \emptyset$. Similarly, there exists $Y_2 \in C$ such that $U_2 \cap Y_2 \neq \emptyset$. Because C is totally ordered, we may say $Y_1 \subseteq Y_2$. Then $Y_2 \cap U_1$ and $Y_2 \cap U_2$
are two disjoint nonempty open sets of Y_2 , a contradiction for Y_2 to be irreducible. Therefore, $\bigcup_{Y \in C} Y$ is also irreducible, and hence it is an upper bound for C. Assuming Zorn's lemma, this shows I is contained in a maximal irreducible subspace. - iii) By (i), maximal irreducible subspaces of X are closed. Since one-point sets are clearly irreducible, every single point of X is contained in some maximal irreducible subspace by (ii); hence, it covers X. Now suppose X is Hausdorff. For any given subset $Y \subseteq X$, if Y has at least two points x_1 and x_2 , then there are two disjoint open sets U_1 and U_2 of X so that $x_1 \in U_1 \cap Y$ and $X_2 \in U_2 \cap Y$. Therefore, the irreducible components of a Hausdorff space are singletons. - iv) We claim that closed irreducible subspaces of X are exactly the closed sets $V(\mathfrak{q})$, where \mathfrak{q} is a prime ideal of A. Since $\{\mathfrak{q}\}$ is a singleton subset of $\mathrm{Spec}(A)$, it is irreducible; hence, its closure $\overline{\{\mathfrak{q}\}} = V(\mathfrak{q})$ is also irreducible by (i) and Exercise 1.18. Conversely, suppose $V(\mathfrak{a})$ is irreducible for given ideal \mathfrak{a} of A. We may say $\mathfrak{a} = r(\mathfrak{a})$. If \mathfrak{a} is not prime, then there are $b, c \in A \setminus \mathfrak{a}$ such that $bc \in \mathfrak{a}$. Then, $V(\mathfrak{a}) \supsetneq V(\mathfrak{a} + (b))$ and $V(\mathfrak{a}) \supsetneq V(\mathfrak{a} + (c))$, since $r(\mathfrak{a}) \not= r(\mathfrak{a} + (b))$ and $r(\mathfrak{a}) \not= r(\mathfrak{a} + (c))$. However, $V(\mathfrak{a}) \subseteq V(\mathfrak{a} + (b)) \cup V(\mathfrak{a} + (c))$, and hence $V(\mathfrak{a}) \setminus V(\mathfrak{a} + (b))$ and $V(\mathfrak{a}) \setminus V(\mathfrak{a} + (c))$ are two nonempty disjoin open sets of $V(\mathfrak{a})$, a contradiction. As a result, the claim implies the irreducible components of X are exactly $V(\mathfrak{p})$, where \mathfrak{p} is a minimal prime ideal of A. - **1.21.** Let $\phi: A \to B$ be a ring homomorphism. Let $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$. If $\mathfrak{q} \in Y$, then $\phi^{-1}(\mathfrak{q})$ is a prime ideal of A, i.e., a point of X. Hence ϕ induces a mapping $\phi^*: Y \to X$. Show that - i) If $f \in A$ then $\phi^{*-1}(X_f) = Y_{\phi(f)}$, and hence that ϕ^* is continuous. - ii) If α is an ideal of A, then $\phi^{*-1}(V(\alpha)) = V(\alpha^e)$ - iii) If b is an ideal of B, then $\overline{\phi^*(V(b))} = V(b^c)$. - iv) If ϕ is surjective, then ϕ^* is a homeomorphism of Y onto the closed subset V (Ker (ϕ)) of X. (In particular, Spec(A) and Spec (A/\mathfrak{N}) (where \mathfrak{N} is the nilradical of A) are naturally homeomorphic.) - v) If ϕ is injective, then $\phi^*(Y)$ is dense in X. More precisely, $\phi^*(Y)$ is dense in $X \Leftrightarrow \text{Ker}(\phi) \subseteq \mathfrak{N}$. - vi) Let $\psi: B \to C$ be another ring homomorphism. Then $(\psi \circ \phi)^* = \phi^* \circ \psi^*$. - vii) Let A be an integral domain with just one non-zero prime ideal \mathfrak{p} , and let K be the field of fractions of A. Let $B = (A/\mathfrak{p}) \times K$. Define $\phi : A \to B$ by $\phi(x) = (\bar{x}, x)$, where \bar{x} is the image of x in A/\mathfrak{p} . Show that ϕ^* is bijective but not a homeomorphism. - **Solution**. i) Notice $\mathfrak{q} \in \phi^{*-1}(X_f) \Leftrightarrow \phi^*(\mathfrak{q}) \in X_f \Leftrightarrow \phi^{-1}(\mathfrak{q}) \in X_f \Leftrightarrow f \notin \phi^{-1}(\mathfrak{q}) \Leftrightarrow \phi(f) \notin \mathfrak{q} \Leftrightarrow \mathfrak{q} \in Y_{\phi(f)}$, so $\phi^{*-1}(X_f) = Y_{\phi(f)}$. Because X_f forms a basis for the Zariski topology, ϕ^* is continuous. - ii) Observe $\mathfrak{p} \in \phi^{*-1}(V(\mathfrak{a})) \Leftrightarrow \phi^*(\mathfrak{p}) \in V(\mathfrak{a}) \Leftrightarrow \mathfrak{a} \subseteq \phi^*(\mathfrak{p}) \Leftrightarrow \mathfrak{a} \subseteq \phi^{-1}(\mathfrak{p}) \Leftrightarrow \mathfrak{a}^e \subseteq \mathfrak{p} \Leftrightarrow \mathfrak{p} \in V(\mathfrak{a}^e).$ - iii) Notice $\phi^*(V(\mathfrak{b}))$ consists of \mathfrak{q}^c where $\mathfrak{q} \subseteq B$ is a prime ideal containing \mathfrak{b} . Since $\mathfrak{b} \subseteq \mathfrak{q}$ implies $\mathfrak{b}^c \subseteq \mathfrak{q}^c$, we get $\phi^*(V(\mathfrak{b})) \subseteq V(\mathfrak{b}^c)$. To show $V(\mathfrak{b}^c)$ is actually the smallest closed set containing $\phi^*(V(\mathfrak{b}))$, suppose $\phi^*(V(\mathfrak{b})) \subseteq V(\mathfrak{a})$ for some ideal \mathfrak{a} of A. Then $V(\mathfrak{b}) \subseteq \phi^{*-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$, so $r(\mathfrak{b}) \supseteq r(\mathfrak{a}^e)$. However, $r(\mathfrak{b}^c) = r(\mathfrak{b})^c \supseteq r(\mathfrak{a}^e)^c = r(\mathfrak{a}^{ec}) \supseteq r(\mathfrak{a})$, and hence $V(\mathfrak{b}^c) \subseteq V(\mathfrak{a})$. iv) For $\mathfrak{p}, \mathfrak{q} \in Y$, suppose $\phi^*(\mathfrak{p}) = \phi^*(\mathfrak{q})$. Then $\phi^{-1}(\mathfrak{p}) = \phi^{-1}(\mathfrak{q})$, and hence $\mathfrak{p} = \mathfrak{q}$ by the surjectivity of ϕ . Therefore, ϕ^* is injective. Now prove the following claim. **Claim.** Let $\phi: A \to B$ be a surjective ring homomorphism. If α is an ideal of A, then $\phi(\alpha)$ is also an ideal of B. Moreover, if α is a prime containing $Ker(\phi)$, then $\phi(\alpha)$ is also prime. *Proof.* For any $y \in B$, $\phi(x) = y$ for some $x \in A$. Then $y\phi(\alpha) = \phi(x)\phi(\alpha) = \phi(x\alpha) \subseteq \phi(\alpha)$. Now assume α is a prime ideal of A. Then $\overline{\phi}: A/\alpha \to B/\phi(\alpha)$ defined by $x + \alpha \mapsto \phi(x) + \phi(\alpha)$ is a ring isomorphism, for it is clearly surjective, and $\phi(x) \in \phi(\mathfrak{p})$ implies $x \in \alpha + \text{Ker}(\phi) = \alpha$. Therefore, $B/\phi(\mathfrak{p})$ is an integral domain, so $\phi(\alpha)$ is prime in B. Assume $\mathfrak p$ is a prime ideal of A containing $\mathrm{Ker}(\phi)$; that is, $\mathfrak p \in V(\mathrm{Ker}(\phi))$. Then $\phi(\mathfrak p)$ is prime in B by the claim, so $\mathfrak p$ is a preimage of some prime in Y, implying $V(\mathrm{Ker}(\phi)) \subseteq \phi^*(Y)$. Since every prime ideal contains 0, the opposite inclusion is trivial. Finally, let's show $\phi^*: Y \to V(\text{Ker}(\phi))$ is a closed map. For any ideal $\mathfrak b$ of Y, we claim that $\phi^*(V(\mathfrak b)) = V(\text{Ker}(\phi)) \cap V(\mathfrak b^c)$. If a prime ideal $\mathfrak q$ in B contains $\mathfrak b$, then clearly $\mathfrak q^c$ contains $\mathfrak b^c$ and $\text{Ker}(\phi)$, so $\phi^*(V(\mathfrak b)) \subseteq V(\text{Ker}(\phi)) \cap V(\mathfrak b^c)$. For the opposite inclusion, notice $V(\text{Ker}(\phi)) \cap V(\mathfrak b^c) = V(\text{Ker}(\phi) + \mathfrak b^c) = V(\mathfrak b^c)$. By the claim, if a prime ideal $\mathfrak p$ of A contains $\mathfrak b^c$, then $\phi(\mathfrak p)$ is a prime containing $\mathfrak b$. This shows $\phi^*: Y \to V(\text{Ker}(\phi))$ is a closed map, so is a homeomorphism of Y onto $V(\text{Ker}(\phi))$. Since $\mathfrak p \supseteq \text{Ker}(\phi)$, $\phi^{-1}(\phi(\mathfrak p)) = \mathfrak p + \text{Ker}(\phi) = \mathfrak p$; hence, $\mathfrak p \in \phi^*(V(\mathfrak b))$ and $\phi^*(V(\mathfrak b)) = V(\phi^{-1}(\mathfrak b))$. This shows that ϕ^* is a homeomorphism from Y to $V(\text{Ker}(\phi))$. In particular, natural surjective homomorphism $\pi: A \to A/\mathfrak{N}$ induces homeomorphism π^* from $\operatorname{Spec}(A)$ to $\operatorname{Spec}(A/\mathfrak{N})$ for the Zariski topology, observing $V(\mathfrak{N}) = \operatorname{Spec}(A)$. - v) By (iii), $X = \overline{\phi^*(Y)} = \overline{\phi^*(V(0))} = V(\text{Ker}(\phi))$ if and only if $\text{Ker}(\phi) \subseteq \mathfrak{R}$. In particular, if ϕ is injective, then $\phi^*(Y)$ is dense in X. - vi) Let \mathfrak{q} be a prime ideal of C. Then $(\psi \circ \phi)^*(\mathfrak{q}) = (\psi \circ \phi)^{-1}(\mathfrak{q}) = \phi^{-1}(\psi^{-1}(\mathfrak{q})) = (\phi^* \circ \psi^*)(\mathfrak{q})$. - vii) Spec(A) is the Sierpiński space on $\{0, \mathfrak{p}\}$. It is easy to show that for any nonzero commutative rings A, B, prime ideals of the direct product $A \times B$ are of the form $\mathfrak{p} \times B$ or $A \times \mathfrak{q}$ where \mathfrak{p} and \mathfrak{q} are prime ideals of A and B respectively. Therefore, Spec(B) is the discrete topology on $\{\bar{0} \times K, A/\mathfrak{p} \times 0\}$. Since $\phi^*(\bar{0} \times K) = \mathfrak{p}$ and $\phi^*(A/\mathfrak{p} \times 0) = 0$, ϕ^* is a bijective continuous function, but clearly not a homeomorphism. - **1.22.** Let $A = \prod_{i=1}^{n} A_i$ be the direct product of rings A_i . Show that $\operatorname{Spec}(A)$ is the disjoint union of open (and closed) subspaces X_i , where X_i is canonically homeomorphic with $\operatorname{Spec}(A_i)$. Conversely, let A be any ring. Show that the following statements are equivalent: - i) $X = \operatorname{Spec}(A)$ is disconnected. - ii) $A \cong A_1 \times A_2$ where neither of the rings A_1 , A_2 is the zero ring. - iii) A contains an idempotent $\neq 0, 1$. In particular, the spectrum of a local ring is always connected (Exercise 12) **Solution**. It is easy to show that every ideals of A is of the form $\alpha_1 \times \cdots \times \alpha_n$ where each α_i is an ideal of A_i , and every prime ideal of A is of the form $A_1 \times \cdots \times A_{i-1} \times \mathfrak{p} \times A_{i+1} \times \cdots \times A_n$ where \mathfrak{p} is a prime ideal of A_i . Let $$X_i := V(A_1 \times \cdots \times A_{i-1} \times 0 \times A_{i+1} \times \cdots \times A_n)$$ for each $1 \le i \le n$. Clearly, $A = \coprod_{i=1}^n X_i$ as a set. Since $$X_i = A \setminus (X_1 \cup \cdots \cup X_{i-1} \cup X_{i+1} \cup
\cdots \cup X_n),$$ each X_i is both open and closed. Let S be subset of A. Then, $$S \cap X_i = V(A_1 \times \cdots \times A_{i-1} \times \alpha_i \times A_{i+1} \times \cdots \times A_n)$$ for an ideal $a_i \subseteq A_i$ for each $1 \le i \le n$ if and only if $S = V(\alpha_1 \times \cdots \times \alpha_n)$. Therefore, $A = \coprod_{i=1}^n X_i$ as a topology. Consider the canonical projection $\pi_i : A \to A_i$. Since $\text{Ker}(\pi) = A_1 \times \cdots \times A_{i-1} \times 0 \times A_{i+1} \times \cdots \times A_n$, the induced continuous map $\pi^* : \text{Spec}(A_i) \to \text{Spec}(A)$ is a homeomorphism of $\text{Spec}(A_i)$ into X_i by Exercise 1.22. By the previous discussion, (ii) clearly implies (i). Since $(1,0) \in A_1 \times A_2$ is an idempotent, (ii) also implies (iii). Conversely, if A contains an idempotent $e \neq 0, 1$, then by the Chines Remainder Theorem (Proposition 1.10), we get $$A \cong A/(e(e-1)) = A/(e)(e-1) \cong A/(e) \times A/(e-1),$$ since (e) + (e - 1) = (1). This shows that (ii) and (iii) are equivalent. The remaining part, which is actually the hardest one, is to show (i) \Rightarrow (ii) or (iii). Firstly, we shall prove a lemma. **Lemma.** Let A be a ring. For $a, b \in A$, if (a) + (b) = (1), then $(a^k) + (b) = (1)$ for any integer $k \ge 1$. *Proof.* Induction on k. The case for k=1 is trivial; there are $c_1, d_1 \in A$ satisfying $c_1a+d_1b=1$. For k>1, by the induction hypothesis, there exist $c_{k-1}, d_{k-1} \in A$ so that $c_{k-1}a^{k-1}+d_{k-1}b=1$. Then, $$1 = (c_1 a + d_1 b)(c_{k-1} a^{k-1} + d_{k-1} b) = c_1 c_{k-1} a^k + (c_1 d_{k-1} + d_1 c_{k-1} a^{k-1} + d_1 d_{k-1} b)b.$$ Now, suppose Spec(A) is disconnected. There exist two ideals α_1 , α_2 of A so that Spec(A) = $V(\alpha_1) \cup V(\alpha_2)$ and $V(\alpha_1) \cap V(\alpha_2) = \emptyset$. There is no harm assuming $r(\alpha_1) = \alpha_1$ and $r(\alpha_2) = \alpha_2$ (Exercise 1.15). Let $\mathfrak R$ be the nilradical of A. Since $V(\alpha_1) \cup V(\alpha_2) = V(\alpha_1 \cap \alpha_2)$, we get $\alpha_1 \cap \alpha_2 \subseteq \mathfrak R$. However, $r(\alpha_1 \cap \alpha_2) = r(\alpha_1) \cap r(\alpha_2) = \alpha_1 \cap \alpha_2$, so $\alpha_1 \cap \alpha_2 = \mathfrak R$, for $\alpha_1 \cap \alpha_2$ is itself the intersection of all prime ideals in A. Moreover, because $V(\alpha_1) \cap V(\alpha_2) = V(\alpha_1 + \alpha_2) = \emptyset$, we have $\alpha_1 + \alpha_2 = (1)$. Therefore, due to the Chinese Remainder Theorem, $$A/\mathfrak{N} = A/\mathfrak{a}_1\mathfrak{a}_2 \cong A/\mathfrak{a}_1 \times A/\mathfrak{a}_2.$$ Hence, A/\mathfrak{N} has an idempotent $(\bar{1}, \bar{0})$, so there exists $e \in A$ so that $e^2 - e = n$ for some $n \in \mathfrak{N}$. Since n is nilpotent, there is some positive integer k so that $n^k = 0$, implying $e^k(e-1)^k = 0$. However, by the lemma, $(e)^k + (1-e)^k = (1)$, so by the Chinese Remainder Theorem again, $$A \cong A/(e)^k (1-e)^k \cong A/(e)^k \times A/(1-e)^k.$$ In particular, a local ring contains no idempotent (Exercise 1.12), so the spectrum of a local ring must be connected. \Box - **1.23.** Let A be a Boolean ring (Exercise 11), and let X = Spec(A). - i) For each $f \in A$, the set X_f (Exercise 17) is both open and closed in X. - ii) Let $f_1, \ldots, f_n \in A$. Show that $X_{f_1} \cup \cdots \cup X_{f_n} = X_f$ for some $f \in A$. - iii) The sets X_f are the only subsets of X which are both open and closed. - iv) X is a compact Hausdorff space. **Solution**. i) We only need to show X_f is closed. Since f(f-1) = 0 and (f) + (f-1) = (1), every prime ideal of A contains only one of f and f-1. Therefore, $X_f = V(f-1)$. - ii) By Exercise 1.11, every finitely generated ideal in A is principal. Therefore, there exists some f such that $(f_1, \ldots, f_n) = (f)$, so $X_{f_1} \cup \cdots \cup X_{f_n} = X_f$. - iii) Suppose $V(\alpha)$ is a set which are both open and closed. Since X_f forms a basis for $\operatorname{Spec}(A)$, there are family of sets $\{X_f\}_{f\in S}$ for some subset S of A such that $V(\alpha)=\bigcup_{f\in S}X_f$. However, closed subspace of quasi-compact space is also quasi-compact, so there are finitely many f_1,\ldots,f_n so that $V(\alpha)=X_{f_1}\cup\cdots\cup X_{f_n}$. By (ii), we get $V(\alpha)=X_g$ for some $g\in A$. - iv) We already know X is quasi-compact (Exercise 1.17). To show X is Hausdorff, consider two distinct primes $\mathfrak p$ and $\mathfrak q$ of A. Choose some $f \in \mathfrak p \setminus \mathfrak q$. Then $\mathfrak q$ must contain f-1, since 0 = f(f-1). Because every prime ideal must contain one of f and f-1, open sets X_f and X_{f-1} are disjoint, while satisfying $\mathfrak q \in X_f$ and $\mathfrak q \in X_{f-1}$. - **1.24.** Let L be a lattice, in which the sup and inf of two elements a, b are denoted by $a \lor b$ and $a \land b$ respectively. L is a *Boolean lattice* (or *Boolean algebra*) if - i) L has a least element and a greatest element (denoted by 0, 1 respectively). - ii) Each of \vee , \wedge is distributive over the other. - iii) Each $a \in L$ has a unique "complement" $a' \in L$ such that $a \vee a' = 1$ and $a \wedge a' = 0$. (For example, the set of all subsets of a set, ordered by inclusion, is a Boolean lattice.) Let L be a Boolean lattice. Define addition and multiplication in L by the rules $$a + b = (a \wedge b') \vee (a' \wedge b), \quad ab = a \wedge b.$$ Verify that in this way L becomes a Boolean ring, say A(L). Conversely, starting from a Boolean ring A, define an ordering on A as follows: $a \le b$ means that a = ab. Show that, with respect to this ordering, A is a Boolean lattice. **Solution**. Let a,b,c be arbitrary elements of L. Clearly, $a \wedge b = b \wedge a$ and $a \vee b = b \vee a$, so the addition and multiplication of A(L) are commutative. Notice 0' = 1 and 1' = 0. Using the definition of supremum and infimum, it is easy to show that the associativity laws for \wedge and \vee hold; $a \vee (b \vee c) = (a \vee b) \vee c$ and $a \wedge (b \wedge c) = (a \wedge b) \wedge c$. Now, we shall prove two lemmas. **Lemma 1** (De Morgan's Law). Let L be a Boolean lattice. Then $(a \lor b)' = a' \land b'$ and $(a \land b)' = a' \lor b'$ for any $a, b \in L$. *Proof.* $(a \lor b) \lor (a' \land b') = [(a \lor a') \lor b] \land [a \lor (b \lor b')] = (1 \lor b) \land (a \lor 1) = 1 \land 1 = 1$, and $(a \lor b) \land (a' \land b') = [(a \land a') \lor (b \land a')] \land [(a \land b') \lor (b \land b')] = [0 \lor (b \land a')] \land [(a \land b') \lor 0] = (b \land a') \land (a \land b') = (a \land a') \land (b \land b') = 0 \land 0 = 0$. Therefore, by the uniqueness of complement, we have $(a \lor b)' = a' \land b'$. By switching the position of a' with a', and b' with b in $(a \lor b)' = a' \land b'$, we get $(a \land b)' = a' \lor b'$. **Lemma 2.** Let L be a Boolean lattice. Then $(a \wedge b') \vee (a' \wedge b) = (a \vee b) \wedge (a \wedge b)'$. *Proof.* Using Lemma 1, $$(a \wedge b') \vee (a' \wedge b) = (a \vee (a' \wedge b)) \wedge (b' \vee (a' \wedge b)) = (a \vee b) \wedge (b' \vee a') = (a \vee b) \wedge (a \wedge b)'$$. We claim the addition '+' is associative. Using the lemmas, we have $$(a+b)+c = ((a+b) \land c') \lor ((a+b)' \land c)$$ = $(((a \land b') \lor (a' \land b)) \land c') \lor (((a \lor b)' \lor (a \land b)) \land c)$ = $(a \land b' \land c') \lor (a' \land b \land c') \lor (a' \land b' \land c) \lor (a \lor b \lor c).$ Observe the last expression is independent of the order of a, b, c, so the addition is associative. The additive identity is the least element 0, since $$a + 0 = (a \land 1) \lor (a' \land 0) = a \lor 0 = a.$$ Similarly, the multiplicative identity is the greatest element 1; $a1 = a \land 1 = a$. Lastly, the distributive law holds, because $$ab + ac = (a \land b \land (a \land c)') \lor ((a \land b)' \land a \land c)$$ $$= (a \land b \land (a' \lor c')) \lor ((a' \lor b') \land a \land c)$$ $$= (b \land (a \land c')) \lor ((b' \land a) \land c)$$ $$= a \land ((b \land c') \lor (b' \land c))$$ $$= a(b + c).$$ Since $a^2 = a \wedge a = a$, this shows that A(L) is a Boolean ring. Conversely, assume A is a Boolean ring. Then 1 is the greatest element since a=a1 for any $a \in A$. Because 0=0a for all $a \in A$, 0 is the least element. Notice a(a+b+ab)=a and b(a+b+ab)=b (Exercise 1.11). Moreover, if $c \in A$ satisfies a=ac and b=bc, then (a+b+ab)c=a+b+ab. Similarly, it is easy to see that (ab)a=(ab)b=ab, and if $d \in A$ satisfies d=da=db, then d=(ab)d. Therefore, $a \lor b=a+b+ab$ and $a \land b=ab$. Using this fact, $$a \wedge (b \vee c) = a(b+c+bc)$$ $$= ab + ac + abc$$ $$= ab + ac + a^{2}bc$$ $$= ab + ac + (ab)(ac)$$ $$= (a \wedge b) \vee (a \wedge c).$$ and $$(a \lor b) \land (a \lor c) = (a + b + ab)(a + c + ac)$$ $$= a + bc + abc$$ $$= a \lor (b \land c).$$ The complement of a is a' := 1-a, since $a \lor a' = a + (1-a) + a(1-a) = 1$ and a(1-a) = 0. This shows that A is a Boolean lattice. **1.25.** From the last two exercises deduce Stone's theorem, that every Boolean lattice is isomorphic to the lattice of open-and-closed subsets of some compact Hausdorff topological space. **Solution**. Let L be a Boolean lattice. Then by Exercise 24, we can view L as a Boolean ring A(L) where the order is given by $a \le b \Leftrightarrow a = ab$. Recall $\operatorname{Spec}(A(L))$ is a compact Hausdorff topological space, and $X_a := \operatorname{Spec}(A(L)) \setminus V(a)$ is an open-and-closed subset for each $a \in A$. Let $\mathcal{B} := \{X_a \subseteq \operatorname{Spec}(A(L)) : a \in A\}$, and endow order on \mathcal{B} with respect to inclusion. Then \mathcal{B} becomes a Boolean lattice, since - $X_1 = \operatorname{Spec}(A(L))$ is the greatest, $X_0 = \emptyset$ is the least element, - $X_a \vee X_b = X_a \cup X_b = X_{a+b+ab}$ (: Exercise 1.11), - $X_a \wedge X_b = X_a \cap X_b = X_{ab}$, - Each \wedge , \vee is distributive,
for each \cap , \cup is, - $X'_a = X_{(1-a)}$. We claim that $X_a \subseteq X_b$ if and only if $a \le b$. In particular, $X_a = X_b$ if and only if a = b. Only the forward direction is non-trivial. If $X_a \subseteq X_b$, then $r(a) \subseteq r(b)$. But A(L) is boolean, so $(a) \subseteq (b)$. Therefore, there is some $x \in A(L)$ so that a = xb. Because $a = a^2 = xab$ and ab = (xab)b = xab, we finally get a = ab. Therefore, a map $\psi : L \to \mathcal{B}$ defined by $a \mapsto X_a$ is a well-defined bijection, since it is clearly surjective. Actually, it is a lattice isomorphism; observe $$\psi(a \wedge b) = \psi(ab) = X_{ab} = X_a \wedge X_b$$, and $\psi(a \vee b) = \psi(a+b+ab) = X_{a+b+ab} = X_a \vee X_b$. This ends the proof. **1.26.** Let A be a ring. The subspace of $\operatorname{Spec}(A)$ consisting of the maximal ideals of A, with the induced topology, is called the *maximal spectrum* of A and is denoted by $\operatorname{Max}(A)$. For arbitrary commutative rings it does not have the nice functorial properties of $\operatorname{Spec}(A)$ (see Exercise 21), because the inverse image of a maximal ideal under a ring homomorphism need not be maximal. Let X be a compact Hausdorff space and let C(X) denote the ring of all real-valued continuous functions on X (add and multiply functions by adding and multiplying their values). For each $x \in X$, let \mathfrak{m}_x be the set of all $f \in C(X)$ such that f(x) = 0. The ideal \mathfrak{m}_x is maximal, because it is the kernel of the (surjective) homomorphism $C(X) \to \mathbf{R}$ which takes f to f(x). If \widetilde{X} denotes $\mathrm{Max}(C(X))$, we have therefore defined a mapping $\mu: X \to \widetilde{X}$, namely $x \mapsto \mathfrak{m}_x$. We shall show that μ is a homeomorphism of X onto \widetilde{X} . i) Let \mathfrak{m} be any maximal ideal of C(X), and let $V = V(\mathfrak{m})$ be the set of common zeros of the functions in \mathfrak{m} : that is, $$V = \{x \in X : f(x) = 0 \text{ for all } f \in \mathfrak{m}\}.$$ Suppose that V is empty. Then for each $x \in X$ there exists $f_x \in \mathfrak{m}$ such that $f_x(x) \neq 0$. Since f_x is continuous, there is an open neighborhood U_x of x in X on which f_x does not vanish. By compactness a finite number of the neighborhoods, say U_{x_i}, \ldots, U_{x_n} cover X. Let $$f = f_{x_1}^2 + \dots + f_{x_n}^2$$. Then f does not vanish at any point of X, hence is a unit in C(X). But this contradicts $f \in \mathfrak{m}$, hence V is not empty. Let x be a point of V. Then $\mathfrak{m} \subseteq \mathfrak{m}_x$, hence $\mathfrak{m} = \mathfrak{m}_x$ because \mathfrak{m} is maximal. Hence μ is surjective. - ii) By Urysohn's lemma (this is the only non-trivial fact required in the argument) the continuous functions separate the points of X. Hence $x \neq y \Rightarrow \mathfrak{m}_x \neq \mathfrak{m}_y$, and therefore μ is injective. - iii) Let $f \in C(X)$; let $$U_f = \{ x \in X : f(x) \neq 0 \}$$ and let $$\widetilde{U}_f = \{ \mathfrak{m} \in \widetilde{X} : f \notin \mathfrak{m} \}$$ Show that $\mu(U_f) = \widetilde{U}_f$. The open sets U_f (resp. \widetilde{U}_f) form a basis of the topology of X (resp. \widetilde{X}) and therefore μ is a homeomorphism. Thus X can be reconstructed from the ring of functions C(X). **Solution**. Suppose \mathfrak{m} is in $\mu(U_f)$. Then $\mathfrak{m} = \mathfrak{m}_x$ for some $x \in X$ such that $f(x) \neq 0$. Hence, $f \notin \mathfrak{m}_x$, so $\mu(U_f) \subseteq \widetilde{U}_f$. Conversely, suppose $\mathfrak{n} \in \widetilde{U}_f$. Since μ is surjective, there is some $y \in X$ so that $\mathfrak{n} = \mathfrak{m}_y$. Then $f(y) \neq 0$, so y is in U_f . This shows $\mu(U_f) = \widetilde{U}_f$. Let $Y := \operatorname{Spec}(C(X))$. For each $f \in C(X)$, notice $\widetilde{U}_f = \widetilde{X} \cap Y_f$. Since the open sets Y_f of Y form a basis for the topology of Y by Exercise 1.17, the open sets \widetilde{U}_f form a basis for the subspace \widetilde{X} of Y. For each $x \in X$, $x \in U_g$ for any constant function g, so open sets U_f cover X. Also, for any $f, g \in C(X)$, observe $U_{fg} = U_f \cap U_g$. Therefore, open sets U_f form a basis for X. **1.27.** Let k be an algebraically closed field and let $$f_{\alpha}(t_1,\ldots,t_n)=0$$ be a set of polynomial equations in n variables with coefficients in k. The set X of all points $x = (x_1, \ldots, x_n) \in k^n$ which satisfy these equations is an *affine algebraic variety*. Consider the set of all polynomials $g \in k[t_1, ..., t_n]$ with the property that g(x) = 0 for all $x \in X$. This set is an ideal I(X) in the polynomial ring, and is called the *ideal of the variety* X. The quotient ring $$P(X) = k[t_1, \dots, t_n]/I(X)$$ is the ring of polynomial functions on X, because two polynomials g, h define the same polynomial function on X if and only if g - h vanishes at every point of X, that is, if and only if $g - h \in I(X)$. Let ξ_i be the image of t_i in P(X). The ξ_i $(1 \le i \le n)$ are the *coordinate functions* on X: if $x \in X$, then $\xi_i(x)$ is the ith coordinate of x. P(X) is generated as a k-algebra by the coordinate functions, and is called the *coordinate ring* (or affine algebra) of X. As in Exercise 26, for each $x \in X$ let \mathfrak{m}_x be the ideal of all $f \in P(X)$ such that f(x) = 0; it is a maximal ideal of P(X). Hence, if $\widetilde{X} = \operatorname{Max}(P(X))$, we have defined a mapping $\mu: X \to \widetilde{X}$, namely $x \mapsto \mathfrak{m}_x$. It is easy to show that μ is injective: if $x \neq y$, we must have $x_i \neq y_i$ for for some i $(1 \leq i \leq n)$, and hence $\xi_i - x_i$ is in \mathfrak{m}_x , but not in \mathfrak{m}_y , so that $\mathfrak{m}_x \neq \mathfrak{m}_y$. What is less obvious (but still true) is that μ is *surjective*. This is one form of Hilbert's Nullstellensatz (see Chapter 7). **Solution**. (It is too hard to solve this problem without assuming any result in Chapter 7) Assume Corollary 7.10. Then for any $\mathfrak{m} \in \widetilde{X}$, we have $P(X)/\mathfrak{m} \cong k$ since P(X) is a finitely generated k-algebra generated by $\xi_1, \ldots \xi_n$. Let a_i be the image of ξ_i in k by the homomorphism $P(X) \twoheadrightarrow P(X)/\mathfrak{m} \cong k$, and $a := (a_1, \ldots, a_n) \in k^n$. It is easy to see that $(\xi_1 - a_1, \ldots, \xi_n - a_n)$ is a maximal ideal of P(X). Since \mathfrak{m}_a contains $(\xi_1 - a_1, \ldots, \xi_n - a_n)$, we get $\mathfrak{m}_a = (\xi_1 - a_1, \ldots, \xi_n - a_n)$. Then \mathfrak{m} is a maximal ideal which contains $\mathfrak{m}_a = (\xi_1 - a_1, \ldots, \xi_n - a_n)$. Therefore, $\mathfrak{m} = \mu(a)$. **1.28.** Let f_1, \ldots, f_m be elements of $k[t_1, \ldots, t_n]$. They determine a polynomial mapping $\phi: k^n \to k^m$: if $x \in k^n$, the coordinates of $\phi(x)$ are $f_1(x), \ldots, f_m(x)$. Let X, Y be affine algebraic varieties in k^n, k^m respectively. A mapping $\phi : X \to Y$ is said to be *regular* if ϕ is the restriction to X of a polynomial mapping from k^n to k^m . If η is a polynomial function on Y, then $\eta \circ \phi$ is a polynomial function on X. Hence ϕ induces a k-algebra homomorphism $P(Y) \to P(X)$, namely $\eta \mapsto \eta \circ \phi$. Show that in this way we obtain a one-to-one correspondence between the regular mappings $X \to Y$ and the k-algebra homomorphisms $P(Y) \to P(X)$. **Solution**. For a given regular map $\phi: X \to Y$, let $\phi_{\star}: P(Y) \to P(X)$ be the induced k-algebra homomorphism given by $\eta \mapsto \eta \circ \phi$. Then $\phi \mapsto \phi_{\star}$ is a map from the set of regular maps $X \to Y$ to the set of k-algebra homomorphisms $P(Y) \to P(X)$. Now, we construct an inverse of $\phi \mapsto \phi_{\star}$. Suppose $\varphi: P(Y) \to P(X)$ is a k-algebra homomorphism. Then we can find a k-algebra homomorphism $\tilde{\varphi}: k[t'_1, \ldots, t'_m] \to k[t_1, \ldots, t_n]$ so that the following diagram commutes² $$k[t'_1, \dots, t'_m] \xrightarrow{\tilde{\varphi}} k[t_1, \dots, t_n]$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$P(Y) \xrightarrow{\varphi} P(X).$$ Define a polynomial map $\varphi^*: k^n \to k^m$ by $$\varphi^*(x) := (\tilde{\varphi}(t_1')(x), \dots, \tilde{\varphi}(t_m')(x)).$$ For any $f \in k[t'_1, \ldots, t'_m]$, notice $\tilde{\varphi}(f) = f(\tilde{\varphi}(t'_1), \ldots, \tilde{\varphi}(t'_m))$. Since the previous diagram commutes, if $f \in I(Y)$ then $f(\tilde{\varphi}(t'_1), \ldots, \tilde{\varphi}(t'_m))$ is in I(X). Therefore, for $x \in X$, we have $f(\varphi^*(x)) = 0$ for any $f \in I(Y)$, so $\varphi^*(X) \subseteq Y$. This shows $\varphi^* : X \to Y$ is regular, and we get a map $\varphi \mapsto \varphi^*$ from the set of k-algebra homomorphisms $P(Y) \to P(X)$ to the set of regular maps $X \to Y$. We claim that $\varphi \mapsto \varphi^*$ is the two-sided inverse of $\phi \mapsto \phi_*$. For any k-algebra homomorphism $\varphi : P(Y) \to P(X), g \in P(Y)$, and $x \in X$, $$(\varphi^*)_{\star}(g)(x) = (g \circ \varphi^*)(x)$$ $$= g(\tilde{\varphi}(t_1')(x), \dots, \tilde{\varphi}(t_m')(x))$$ $$= \varphi(g)(x),$$ observing $\tilde{\varphi}(\tilde{g}) = \tilde{g}(\tilde{\varphi}(t'_1), \dots, \tilde{\varphi}(t'_m))$ where $\tilde{g} \in k[t'_1, \dots, t'_n]$ is a preimage of g. Therefore, $(\varphi^*)_{\star} = \varphi$. Conversely, suppose $\phi: X \to Y$ is a regular map. Then $\phi(x) = \varphi(x)$ ²One may construct $\tilde{\varphi}$ as follows. Let ξ_i be the image of t_i' in P(Y) and ζ_j be the image of t_j in P(X). Then $\varphi(\xi_i) = p_i(\zeta_1, \dots, \zeta_n)$ for some polynomial $p_i \in k[t_1, \dots, t_n]$. By letting $t_i' \mapsto p_i(t_1, \dots, t_n)$, we get a desired k-algebra homomorphism. $$(f_1(x), \ldots, f_m(x))$$ where $f_i \in k[t_1,
\ldots, t_m]$. For $x \in X$, we have $$(\phi_{\star})^*(x) = (\tilde{\phi}_{\star}(t_1')(x), \ldots, \tilde{\phi}_{\star}(t_m')(x))$$ $$= (f_1(x), \ldots, f_m(x))$$ $$= \phi(x),$$ observing $\phi_{\star}(g) = g \circ \phi = g(f_1, \dots, f_m)$ for any $g \in P(Y)$ and hence $\tilde{\phi}_{\star}(t_i') = f_i$. Therefore, $(\phi_{\star})^* = \phi$ This shows that $\phi \mapsto \phi_{\star}$ and $\varphi \mapsto \varphi^*$ are bijections.